Author
Listed:
- Muhammad Jamil
(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
- Asif Iqbal
(Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei)
- Ning He
(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
- Quentin Cheok
(Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei)
Abstract
It is a well-known fact that the consumption of conventional cutting fluids in metalworking industries leads to severe health and environmental issues. Owing to the EPA (Environmental Protection Agency) increasing regulations regarding pollution and contamination, there is a dire need for a greener fluid with excellent cooling and lubrication characteristics to diminish the environmental impact of cutting fluids, as well as to improve machinability. Cryogens are greener and excellent coolants but poor lubricants, while ester oils are excellent lubricants and poor coolants. Therefore, a hybrid lubri-coolant cutting fluid with synergistic cooling and lubrication characteristics could be a desideratum to replace conventional cutting fluid. To investigate a newly proposed hybrid lubri-coolant, thermophysical properties (density, thermal conductivity, specific heat, and viscosity), heat transfer properties (surface temperature, heat flux, and heat transfer coefficient), and machinability properties (tool life, etc.) are key characteristics of the fluids that decide phase change and heat dissipation capabilities during their application in machining. In the current experimental study, hybrid ethanol–ester oils with/without dry ice (−78 °C) are proposed as cutting fluids and holistically investigated in terms of thermo-physical properties, heat transfer properties, and machinability properties under different cutting conditions. Experimental findings have depicted a 20%, 10%, and 5% decrease in density, specific heat, and viscosity, respectively, with a 15% increase in the thermal conductivity of the fluid with the addition of dry ice. The dry-ice-based hybrid lubri-coolant sprayed onto a Ti-6Al-4V plate enhanced the heat transfer coefficient significantly by 17% compared to hybrid lubri-coolant without dry ice. Besides, hybrid ethanol–ester oil dry ice was treated as a trendsetter and indicated an 11% improvement of the tool life at a cutting speed of 75 m/min and a feed rate of 0.04 mm/z. Therefore, dry-ice-based hybrid lubri-coolant can be applied as a cutting fluid by practitioners in aerospace, automotive, prosthetic body parts manufacturing, and manufacturing industries.
Suggested Citation
Muhammad Jamil & Asif Iqbal & Ning He & Quentin Cheok, 2022.
"Thermophysical Properties and Heat Transfer Performance of Novel Dry-Ice-Based Sustainable Hybrid Lubri-Coolant,"
Sustainability, MDPI, vol. 14(4), pages 1-21, February.
Handle:
RePEc:gam:jsusta:v:14:y:2022:i:4:p:2430-:d:753982
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2430-:d:753982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.