IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2221-d750295.html
   My bibliography  Save this article

Remote Sensing Inversion of Suspended Matter Concentration Using a Neural Network Model Optimized by the Partial Least Squares and Particle Swarm Optimization Algorithms

Author

Listed:
  • Qiaozhen Guo

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Huanhuan Wu

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China
    These authors contributed equally to this work and should be considered co-first authors.)

  • Huiyi Jin

    (School of Basic Science, Tianjin Agricultural University, Tianjin 300392, China)

  • Guang Yang

    (School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China)

  • Xiaoxu Wu

    (State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China)

Abstract

Suspended matter concentration is an important index for the assessment of a water environment and it is also one of the core parameters for remote sensing inversion of water color. Due to the optical complexity of a water body and the interaction between different water quality parameters, the remote sensing inversion accuracy of suspended matter concentration is currently limited. To solve this problem, based on the remote sensing images from Gaofen-2 (GF-2) and the field-measured suspended matter concentration, taking a section of the Haihe River as the study area, this study establishes a remote sensing inversion model. The model combines the partial least squares (PLS) algorithm and the particle swarm optimization (PSO) algorithm to optimize the back-propagation neural network (BPNN) model, i.e., the PLS-PSO-BPNN model. The partial least squares algorithm is involved in screening the input values of the neural network model. The particle swarm optimization algorithm optimizes the weights and thresholds of the neural network model and it thus effectively overcomes the over-fitting of the neural network. The inversion accuracy of the optimized neural network model is compared with that of the partial least squares model and the traditional neural network model by determining the coefficient, the mean absolute error, the root mean square error, the correlation coefficient and the relative root mean square error. The results indicate that the root mean squared error of the PLS-PSO-BPNN inversion model was 3.05 mg/L, which is higher than the accuracy of the statistical regression model. The developed PLS-PSO-BPNN model could be widely applied in other areas to better invert the water quality parameters of surface water.

Suggested Citation

  • Qiaozhen Guo & Huanhuan Wu & Huiyi Jin & Guang Yang & Xiaoxu Wu, 2022. "Remote Sensing Inversion of Suspended Matter Concentration Using a Neural Network Model Optimized by the Partial Least Squares and Particle Swarm Optimization Algorithms," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2221-:d:750295
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2221/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alaa Tharwat & Aboul Ella Hassanien, 2019. "Quantum-Behaved Particle Swarm Optimization for Parameter Optimization of Support Vector Machine," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 576-598, October.
    2. Salah Elsayed & Mohamed Gad & Mohamed Farouk & Ali H. Saleh & Hend Hussein & Adel H. Elmetwalli & Osama Elsherbiny & Farahat S. Moghanm & Moustapha E. Moustapha & Mostafa A. Taher & Ebrahem M. Eid & M, 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    3. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    2. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    3. Jamei, Mehdi & Ahmadianfar, Iman, 2020. "A rigorous model for prediction of viscosity of oil-based hybrid nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    4. Gebdang B. Ruben & Ke Zhang & Hongjun Bao & Xirong Ma, 2018. "Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 273-283, January.
    5. Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Qinghe Zhao & Zifang Zhang & Yuchen Huang & Junlong Fang, 2022. "TPE-RBF-SVM Model for Soybean Categories Recognition in Selected Hyperspectral Bands Based on Extreme Gradient Boosting Feature Importance Values," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    7. Hairong Zhang & Jianzhong Zhou & Lei Ye & Xiaofan Zeng & Yufan Chen, 2015. "Lower Upper Bound Estimation Method Considering Symmetry for Construction of Prediction Intervals in Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5505-5519, December.
    8. Adam P. Piotrowski & Maciej J. Napiorkowski & Monika Kalinowska & Jaroslaw J. Napiorkowski & Marzena Osuch, 2016. "Are Evolutionary Algorithms Effective in Calibrating Different Artificial Neural Network Types for Streamwater Temperature Prediction?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1217-1237, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2221-:d:750295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.