IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1688-d740245.html
   My bibliography  Save this article

Use of Sentinel-2 Satellite for Spatially Variable Rate Fertiliser Management in a Sicilian Vineyard

Author

Listed:
  • Antonio Comparetti

    (Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, 90128 Palermo, Italy)

  • Jose Rafael Marques da Silva

    (Mediterranean Institute for Agriculture, Environment and Development (MED), Department of Rural Engineering, School of Science and Technology, University of Évora, 7000-671 Évora, Portugal
    Agroinsider Lda., PITE, R. Circular Norte, NERE, Sala 18, 7005-841 Évora, Portugal)

Abstract

Satellites can be used for producing maps of within-field crop and soil parameters and, consequentially, spatially variable rate crop input application maps. The plant vegetative vigour index (i.e., Normalised Difference Vegetation Index—NDVI) and the leaf water content index (i.e., Normalised Difference Water Index—NDWI) maps were used to study—through both time and space—the phenological phases of two plots, with Syrah and Nero d’Avola grapevine varieties, in a Sicilian vineyard farm, located in Naro (Agrigento, Sicily, Italy). The aim of this work is to produce spatially variable rate nitrogen fertiliser maps to be applied in the two vineyard plots under study as well as to understand when they should be fertilised or not according to their target crop yields. The average plant vegetative vigour and leaf water content of both the plots showed a high temporal and spatial variability during all phenological phases and, according to these results, the optimal fertilisation time should have been 12 April 2021. In fact, this crop operation is aimed at supporting the vegetative activity but must be performed when the soil water and, therefore, the plant leaf water content are high. Therefore, spatially variable rate fertilisation should have been performed around 12 April 2021 in both plots, using previous NDVI maps and taking into consideration two management zones. This work demonstrates the usefulness of remote sensing data as Decision Support Systems (DSS) for nitrogen fertilisation in order to reduce the production cost, environmental impact and climate footprints per kg of produced grapes, according to the European Green Deal challenges.

Suggested Citation

  • Antonio Comparetti & Jose Rafael Marques da Silva, 2022. "Use of Sentinel-2 Satellite for Spatially Variable Rate Fertiliser Management in a Sicilian Vineyard," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1688-:d:740245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Ammoniaci & Simon-Paolo Kartsiotis & Rita Perria & Paolo Storchi, 2021. "State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture," Agriculture, MDPI, vol. 11(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lizardo Reyna & Jarosław Lasota & Lizardo Reyna-Bowen & Lenin Vera-Montenegro & Emil Cristhian Vega-Ponce & Maria Luisa Izaguirre-Mayoral & Ewa Błońska, 2023. "A New Approach to Monitor Soil Microbial Driven C/N Ratio in Temperate Evergreen Coniferous Forests Managed via Sentinel-2 Spectral Imagery," Land, MDPI, vol. 12(2), pages 1-8, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    2. Sergio Vélez & Rubén Vacas & Hugo Martín & David Ruano-Rosa & Sara Álvarez, 2022. "High-Resolution UAV RGB Imagery Dataset for Precision Agriculture and 3D Photogrammetric Reconstruction Captured over a Pistachio Orchard ( Pistacia vera L.) in Spain," Data, MDPI, vol. 7(11), pages 1-11, November.
    3. Sandra N. Fredes & Luis Á. Ruiz & Jorge A. Recio, 2021. "Modeling °Brix and pH in Wine Grapes from Satellite Images in Colchagua Valley, Chile," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    4. Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    5. Veronica Sanda Chedea & Ana-Maria Drăgulinescu & Liliana Lucia Tomoiagă & Cristina Bălăceanu & Maria Lucia Iliescu, 2021. "Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard," Sustainability, MDPI, vol. 13(15), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1688-:d:740245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.