IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p685-d720607.html
   My bibliography  Save this article

Optimal Allocation of a Hybrid Photovoltaic Biogas Energy System Using Multi-Objective Feasibility Enhanced Particle Swarm Algorithm

Author

Listed:
  • Hussein M. K. Al-Masri

    (Department of Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Abed A. Al-Sharqi

    (Department of Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Sharaf K. Magableh

    (Department of Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Ali Q. Al-Shetwi

    (Electrical Engineering Department, Fahad Bin Sultan University, Tabuk 47721, Saudi Arabia)

  • Maher G. M. Abdolrasol

    (Department of Electric, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), National Institute of Advanced Industrial Science and Technology (AIST), Koriyama 963-0298, Japan)

Abstract

This paper aims to investigate a hybrid photovoltaic (PV) biogas on-grid energy system in Al-Ghabawi territory, Amman, Jordan. The system is accomplished by assessing the system’s reliability and economic viability. Realistic hourly measurements of solar irradiance, ambient temperature, municipal solid waste, and load demand in 2020 were obtained from Jordanian governmental entities. This helps in investigating the proposed system on a real megawatt-scale retrofitting power system. Three case scenarios were performed: loss of power supply probability (LPSP) with total net present cost (TNPC), LPSP with an annualized cost of the system (ACS), and TNPC with the index of reliability (IR). Pareto frontiers were obtained using multi-objective feasibility enhanced particle swarm optimization (MOFEPSO) algorithm. The system’s decision variables were the number of PV panels ( N pv ) and the number of biogas plant working hours per day ( t biogas ). Moreover, three non-dominant Pareto frontier solutions are discussed, including reliable, affordable, and best solutions obtained by fuzzy logic. Double-diode (DD) solar PV model was implemented to obtain an accurate sizing of the proposed system. For instance, the best solution of the third case is held at TNPC of 64.504 million USD/yr and IR of 96.048%. These findings were revealed at 33,459 panels and 12.498 h/day. Further, system emissions for each scenario have been tested. Finally, decision makers are invited to adopt to the findings and energy management strategy of this paper to find reliable and cost-effective best solutions.

Suggested Citation

  • Hussein M. K. Al-Masri & Abed A. Al-Sharqi & Sharaf K. Magableh & Ali Q. Al-Shetwi & Maher G. M. Abdolrasol & Taha Selim Ustun, 2022. "Optimal Allocation of a Hybrid Photovoltaic Biogas Energy System Using Multi-Objective Feasibility Enhanced Particle Swarm Algorithm," Sustainability, MDPI, vol. 14(2), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:685-:d:720607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaccard,Mark, 2006. "Sustainable Fossil Fuels," Cambridge Books, Cambridge University Press, number 9780521679794, January.
    2. N. Panwar, 2009. "Design and performance evaluation of energy efficient biomass gasifier based cookstove on multi fuels," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(7), pages 627-633, October.
    3. Ozgur Demirta, 2013. "Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 23-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Emmanuel Tanyi, 2023. "Optimal Design and Mathematical Modeling of Hybrid Solar PV–Biogas Generator with Energy Storage Power Generation System in Multi-Objective Function Cases," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    2. Prashant & Anwar Shahzad Siddiqui & Md Sarwar & Ahmed Althobaiti & Sherif S. M. Ghoneim, 2022. "Optimal Location and Sizing of Distributed Generators in Power System Network with Power Quality Enhancement Using Fuzzy Logic Controlled D-STATCOM," Sustainability, MDPI, vol. 14(6), pages 1-31, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    2. repec:eco:journ2:2017-04-06 is not listed on IDEAS
    3. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    4. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    5. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    6. Luigi Bottecchia & Pietro Lubello & Pietro Zambelli & Carlo Carcasci & Lukas Kranzl, 2021. "The Potential of Simulating Energy Systems: The Multi Energy Systems Simulator Model," Energies, MDPI, vol. 14(18), pages 1-27, September.
    7. Lei Xiong & Cheng-Lein Teng & Bo-Wei Zhu & Gwo-Hshiung Tzeng & Shan-Lin Huang, 2017. "Using the D-DANP-mV Model to Explore the Continuous System Improvement Strategy for Sustainable Development of Creative Communities," IJERPH, MDPI, vol. 14(11), pages 1-37, October.
    8. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    9. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    10. Elías Hurtado Pérez & Oscar Mulumba Ilunga & David Alfonso Solar & María Cristina Moros Gómez & Paula Bastida-Molina, 2020. "Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    11. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    12. Urošević, Branka Gvozdenac & Marinović, Budimirka, 2021. "Ranking construction of small hydro power plants using multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 172(C), pages 1174-1183.
    13. Emel Yontar & Onur Derse, 2023. "Evaluation of sustainable energy action plan strategies with a SWOT/TWOS-based AHP/ANP approach: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5691-5715, June.
    14. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    15. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    16. Hegazy Rezk & Basem Alamri & Mokhtar Aly & Ahmed Fathy & Abdul G. Olabi & Mohammad Ali Abdelkareem & Hamdy A. Ziedan, 2021. "Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    17. Jolanta Latosińska & Dorota Miłek & Łukasz Gibowski, 2024. "Global Conditions and Changes in the Level of Renewable Energy Sources," Energies, MDPI, vol. 17(11), pages 1-21, May.
    18. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    19. Anvar Tulaganov & Gulnara Sagindykova & Murad Isaev & Bibigul Bimbetova & Maira Kaiyrgaliyeva & Bakhitzhamal Aidosova & Aizhan Orynbassarova, 2022. "The Impact Analysis of Electricity Prices on the Energy Intensity of the Kazakhstani Economy and Sustainable Development," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 241-248, March.
    20. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    21. Ionuț-Alexandru Spânu & Alexandru Ozunu & Dacinia Crina Petrescu & Ruxandra Malina Petrescu-Mag, 2022. "A Comparative View of Agri-Environmental Indicators and Stakeholders’ Assessment of Their Quality," Agriculture, MDPI, vol. 12(4), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:685-:d:720607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.