IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16673-d1001927.html
   My bibliography  Save this article

Landscape Pattern Consistency Assessment of 10 m Land Cover Products in Different Ecological Zoning Contexts of Sichuan Province, China

Author

Listed:
  • Miaomiao Ma

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
    Henan College of Surveying and Mapping, Zhengzhou 450000, China)

  • Youfeng Zou

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Wenzhi Zhang

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Chunhui Chen

    (Henan Institute of Geophysical Spatial Information, Zhengzhou 450000, China)

Abstract

The research on land cover and its changing value to the ecology environment and ecosystem service is of great importance. Understanding the landscape patterns and accuracy in remote sensing land cover data from multiple sources under eco-regionalization is important for relevant research under eco-regionalization. Land cover and land use in different ecological regionalization contexts influence massive ecosystem processes on a global scale, and many ecosystem models are dependent on accurate land cover information. It is, therefore, important to assess the available global land cover products based on different ecological zoning contexts and to understand the differences between them so that different researchers can apply them in a rational way. This study took Sichuan Province as an experimental case. Based on the three methods of spatial superposition, landscape index, and validation sample, we discussed and then analyzed the consistency of landscape patterns for the three 10 m global land cover data under different ecogeographic zones. The results showed that the spatial consistency of FROM-GLC, ESA, and ESRI land cover data were high under the ecological zoning of Palearctic0518 (PA0518) and PA1017, while the spatial pattern was less consistent for the three land cover data under the ecological zoning of PA0509 and PA0437. The fully consistent areas for the three data were 44,420.9 km 2 and 53,368.9 km 2 , respectively. The results of the quantitative analysis of the landscape index showed significant differences in the degree of landscape fragmentation, landscape shape complexity, and the connectivity among landscape patches of several land cover data were significantly different under different ecological zones. Based on the three kinds of independent validation samples to achieve the absolute accuracy of evaluation, the overall accuracy of the FROM-GLC, ESA, and ESRI land cover data was less than 60%, and future drawing still needs to further improve the regional land cover data mapping accuracy under different ecological zones in order to carry out ecological environment monitoring, land ecological security evaluation, and related research to provide a reference.

Suggested Citation

  • Miaomiao Ma & Youfeng Zou & Wenzhi Zhang & Chunhui Chen, 2022. "Landscape Pattern Consistency Assessment of 10 m Land Cover Products in Different Ecological Zoning Contexts of Sichuan Province, China," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16673-:d:1001927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Wang & Zhihua Wang & Hongbin Cheng & Junmei Kang & Xiaoliang Liu, 2022. "Land Cover Changing Pattern in Pre- and Post-Earthquake Affected Area from Remote Sensing Data: A Case of Lushan County, Sichuan Province," Land, MDPI, vol. 11(8), pages 1-24, July.
    2. Junmei Kang & Xiaomei Yang & Zhihua Wang & Hongbin Cheng & Jun Wang & Hongtao Tang & Yan Li & Zongpan Bian & Zhuoli Bai, 2022. "Comparison of Three Ten Meter Land Cover Products in a Drought Region: A Case Study in Northwestern China," Land, MDPI, vol. 11(3), pages 1-20, March.
    3. Alemayehu Midekisa & Felix Holl & David J Savory & Ricardo Andrade-Pacheco & Peter W Gething & Adam Bennett & Hugh J W Sturrock, 2017. "Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    4. Tolessa, Terefe & Senbeta, Feyera & Kidane, Moges, 2017. "The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia," Ecosystem Services, Elsevier, vol. 23(C), pages 47-54.
    5. Junmei Kang & Zhihua Wang & Hongbin Cheng & Jun Wang & Xiaoliang Liu, 2022. "Remote Sensing Land Use Evolution in Earthquake-Stricken Regions of Wenchuan County, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zongpan Bian & Dongdong Zhang & Jun Xu & Hongtao Tang & Zhuoli Bai & Yan Li, 2022. "Study on the Evolution Law of Surface Landscape Pattern in Earthquake-Stricken Areas by Remote Sensing: A Case Study of Jiuzhaigou County, Sichuan Province," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    2. Motuma Shiferaw Regasa & Michael Nones & Dereje Adeba, 2021. "A Review on Land Use and Land Cover Change in Ethiopian Basins," Land, MDPI, vol. 10(6), pages 1-18, June.
    3. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    4. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    5. Daniel Aja & Michael K. Miyittah & Donatus Bapentire Angnuureng, 2022. "Quantifying Mangrove Extent Using a Combination of Optical and Radar Images in a Wetland Complex, Western Region, Ghana," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    6. Fatemeh Mohammadyari & Ardavan Zarandian & Mir Mehrdad Mirsanjari & Jurate Suziedelyte Visockiene & Egle Tumeliene, 2023. "Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape," Land, MDPI, vol. 12(2), pages 1-24, January.
    7. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    8. Junmei Kang & Xiaomei Yang & Zhihua Wang & Hongbin Cheng & Jun Wang & Hongtao Tang & Yan Li & Zongpan Bian & Zhuoli Bai, 2022. "Comparison of Three Ten Meter Land Cover Products in a Drought Region: A Case Study in Northwestern China," Land, MDPI, vol. 11(3), pages 1-20, March.
    9. Fengjie Gao & Jinfang Cui & Si Zhang & Xiaohui Xin & Shaoliang Zhang & Jun Zhou & Ying Zhang, 2022. "Spatio-Temporal Distribution and Driving Factors of Ecosystem Service Value in a Fragile Hilly Area of North China," Land, MDPI, vol. 11(12), pages 1-20, December.
    10. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    11. Lopes, Catarina & Leite, Ana & Vasconcelos, Maria José, 2019. "Open-access cloud resources contribute to mainstream REDD+: The case of Mozambique," Land Use Policy, Elsevier, vol. 82(C), pages 48-60.
    12. Sai Hu & Longqian Chen & Long Li & Bingyi Wang & Lina Yuan & Liang Cheng & Ziqi Yu & Ting Zhang, 2019. "Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    13. Md. Mostafizur Rahman & György Szabó, 2021. "Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh," Land, MDPI, vol. 10(8), pages 1-27, July.
    14. Damien Sinonmatohou Tiando & Shougeng Hu & Xin Fan & Muhammad Rashid Ali, 2021. "Tropical Coastal Land-Use and Land Cover Changes Impact on Ecosystem Service Value during Rapid Urbanization of Benin, West Africa," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    15. Henghui Xi & Wanglai Cui & Li Cai & Mengyuan Chen & Chenglei Xu, 2021. "Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    16. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    17. Rastegaripour, Fatemeh & Tavassoli, Abolfazl & Babaeian, Mahdi & Fernández-Gálvez, Jesús & Caballero-Calvo, Andrés, 2024. "Assessing the impacts of climate change on water resource management and crop patterns in Eastern Iran," Agricultural Water Management, Elsevier, vol. 295(C).
    18. Wubeshet Damtea & Dongyeob Kim & Sangjun Im, 2020. "Spatiotemporal Analysis of Land Cover Changes in the Chemoga Basin, Ethiopia, Using Landsat and Google Earth Images," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    19. Peng, Jian & Hu, Xiaoxu & Wang, Xiaoyu & Meersmans, Jeroen & Liu, Yanxu & Qiu, Sijing, 2019. "Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China," Ecosystem Services, Elsevier, vol. 39(C).
    20. Subham Mukherjee & Pradip Kumar Sikdar & Sukdeb Pal & Brigitta Schütt, 2021. "Assessment of Environmental Water Security of an Asian Deltaic Megacity and Its Peri-Urban Wetland Areas," Sustainability, MDPI, vol. 13(5), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16673-:d:1001927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.