IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16110-d991461.html
   My bibliography  Save this article

Mitigating Subsynchronous Torsional Interaction Using Geometric Feature Extraction Method

Author

Listed:
  • Hyeokjin Noh

    (School of Electric Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea)

  • Hwanhee Cho

    (Smart Electrical Signal Division, Korea Railroad Research Institute, Uiwang 16105, Republic of Korea)

  • Sungyun Choi

    (School of Electric Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea)

  • Byongjun Lee

    (School of Electric Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea)

Abstract

This paper proposes a method to mitigate subsynchronous torsional interaction detected during power system operation. This innovative method employs the delay reconstruction of the damping controller of a thyristor-controlled series compensator. This addresses the need to detect and manage stability and electromagnetic transients in power systems caused by the increasing use of fast-response power electronics. Previously, severe oscillation conditions could be avoided via analysis of the subsynchronous torsional interaction scenarios during the planning stage, enabling the suppression of oscillations. However, planning, modeling, and analysis for various scenarios becomes more difficult as the complexity of the power system increases, owing to the use of renewable energy and the incorporation of topology changes. Therefore, interest in measurement data-based real-time oscillation analysis has increased. The first step of the mitigation strategy proposed herein reconstructs nonlinear time-series data to detect subsynchronous torsional interaction in real time and generate alert signals. The second step of the strategy is that the controller mitigates oscillations by controlling the firing angle using the geometric feature extraction method. In this paper, the relaxation of the frequency oscillation in the subsynchronous region of about 22 Hz and about 18 Hz was verified through two simulation cases.

Suggested Citation

  • Hyeokjin Noh & Hwanhee Cho & Sungyun Choi & Byongjun Lee, 2022. "Mitigating Subsynchronous Torsional Interaction Using Geometric Feature Extraction Method," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16110-:d:991461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vinay Sewdien & Xiongfei Wang & Jose Rueda Torres & Mart van der Meijden, 2020. "Critical Review of Mitigation Solutions for SSO in Modern Transmission Grids," Energies, MDPI, vol. 13(13), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaser Bostani & Saeid Jalilzadeh & Saleh Mobayen & Thaned Rojsiraphisal & Andrzej Bartoszewicz, 2022. "Damping of Subsynchronous Resonance in Utility DFIG-Based Wind Farms Using Wide-Area Fuzzy Control Approach," Energies, MDPI, vol. 15(5), pages 1-15, February.
    2. Vinay Sewdien & Jose Luis Rueda Torres & Mart van der Meijden, 2020. "Evaluation of Phase Imbalance Compensation for Mitigating DFIG-Series Capacitor Interaction," Energies, MDPI, vol. 13(17), pages 1-17, September.
    3. Lorenzo Bongini & Rosa Anna Mastromauro & Daniele Sgrò & Fabrizio Malvaldi, 2020. "Electrical Damping Assessment and Sensitivity Analysis of a Liquefied Natural Gas Plant: Experimental Validation," Energies, MDPI, vol. 13(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16110-:d:991461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.