IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16076-d990585.html
   My bibliography  Save this article

A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy

Author

Listed:
  • Jaenam Lee

    (Rural Research Institute, Korea Rural Community Corporation, Naju 58327, Republic of Korea)

  • Hyungjin Shin

    (Rural Research Institute, Korea Rural Community Corporation, Naju 58327, Republic of Korea)

  • Jaekyoung Noh

    (Department of Agricultural and Rural Engineering, Chungnam National University, Daejeon 34134, Republic of Korea)

Abstract

A data-driven approach is required to scientifically manage agricultural water resources in accordance with the integrated water management policy of South Korea. In this study, a quantification strategy is presented to calculate reservoir supply by comparing the results with the actual reservoir water storage. Strategies considering current calculation methods were divided into canal flow measurement (S1), theoretical flow rate (S2), water storage decrease in field practice (S3), and water demand in design practice (S4), utilizing water levels of the reservoir and its canal and the level–flow rate curve obtained from surveying the canal flow. Each strategy was assessed through hydrological verification of reservoir water balance modeling. Based on the determination coefficient (R 2 ), Nash–Sutcliffe efficiency (NSE), and relative error (RE) values, the S1 method was found to be the most suitable. S2 had lower reliability than S1, while S3 and S4 satisfied neither R 2 nor NSE and had a larger RE than S1 and S2. To accurately quantify agricultural water supplies, the importance of directly measuring reservoir canal flows must be emphasized using automatic water level and flow gauges in canals. This study provides insights into more scientific management of agricultural reservoir water supplies and more effective monitoring of agricultural water usage.

Suggested Citation

  • Jaenam Lee & Hyungjin Shin & Jaekyoung Noh, 2022. "A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16076-:d:990585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nam, Won-Ho & Choi, Jin-Yong & Hong, Eun-Mi, 2015. "Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea," Agricultural Water Management, Elsevier, vol. 152(C), pages 173-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Opstal, Jonna D. & Neale, Christopher M.U. & Hipps, Lawrence E., 2022. "Evaluating the adaptability of an irrigation district to seasonal water availability using a decade of remotely sensed evapotranspiration estimates," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Kassahun, Habtamu Tilahun & Nicholson, Charles F. & Jacobsen, Jette Bredahl & Steenhuis, Tammo S., 2016. "Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands," Agricultural Water Management, Elsevier, vol. 168(C), pages 45-55.
    3. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    4. Yining Ma & Suri Guga & Jie Xu & Yulin Su & Xingpeng Liu & Zhijun Tong & Jiquan Zhang, 2022. "Agricultural Vulnerability Assessment of High-Temperature Disaster in Shaanxi Province of China," Agriculture, MDPI, vol. 12(7), pages 1-20, July.
    5. King, Darran A. & Meyer, Wayne S. & Connor, Jeffery D., 2019. "Interactive land use strategic assessment: An assessment tool for irrigation profitability under climate uncertainty," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16076-:d:990585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.