IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15533-d980686.html
   My bibliography  Save this article

Mapping of the Greenhouse Gas Emission Potential for the Offshore Wind Power Sector in Guangdong, China

Author

Listed:
  • Zetao Huang

    (College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China)

  • Youkai Yu

    (Institute for Innovation and Entrepreneurship, Loughborough University, London E20 3BS, UK)

  • Yushu Chen

    (Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
    Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China)

  • Tao Tan

    (Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China
    School of Mechanical Engineering, Nanjing Tech University, Nanjing 211816, China)

  • Xuhui Kong

    (College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China)

Abstract

This study aims to assess the potential greenhouse gas (GHG) emissions of delivering 1 kWh from planned offshore wind farm sites to the grid in the Guangdong Province, China. In contrast to most previous studies, we avoided underestimating GHG emissions per kWh by approximately 49% by adopting a spatialized life-cycle inventory (LCI)-improved stock-driven model under the medium scenario combination. We also developed a callable spatialized LCI to model the spatial differences in the GHG emissions per kWh by cells in planned offshore wind farm sites in Guangdong. The modeling results indicate that, under the medium scenario combination, the GHG emissions per kWh will range from 4.6 to 19 gCO 2eq /kWh and the cells with higher emissions are concentrated in the deep-water wind farms in the eastern ocean of the Guangdong Province. According to the mechanism by which the different scenarios affect the modeling results, increasing the unit capacity of turbines is the most effective approach for reducing the GHG emissions per kWh and decreasing the impact of natural conditions. Air density can be used as an empirical spatial variable to predict the GHG emission potential of planned wind farm sites in Guangdong. The modeling framework in this study provides a more reliable quantitative tool for decision-makers in the offshore wind sector that can be used directly for any offshore wind system with a monopile foundation and be extended to wind power systems with other foundation types, or even to the entire renewable energy and other infrastructure systems after certain modifications.

Suggested Citation

  • Zetao Huang & Youkai Yu & Yushu Chen & Tao Tan & Xuhui Kong, 2022. "Mapping of the Greenhouse Gas Emission Potential for the Offshore Wind Power Sector in Guangdong, China," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15533-:d:980686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Tsai & Jarod C. Kelly & Brett S. Simon & Rachel M. Chalat & Gregory A. Keoleian, 2016. "Life Cycle Assessment of Offshore Wind Farm Siting: Effects of Locational Factors, Lake Depth, and Distance from Shore," Journal of Industrial Ecology, Yale University, vol. 20(6), pages 1370-1383, December.
    2. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    3. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    4. Pierryves Padey & Isabelle Blanc & Denis Le Boulch & Zhao Xiusheng, 2012. "A Simplified Life Cycle Approach for Assessing Greenhouse Gas Emissions of Wind Electricity," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 28-38, April.
    5. Reimers, Britta & Özdirik, Burcu & Kaltschmitt, Martin, 2014. "Greenhouse gas emissions from electricity generated by offshore wind farms," Renewable Energy, Elsevier, vol. 72(C), pages 428-438.
    6. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    2. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    3. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).
    4. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    5. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    6. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    7. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    8. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    9. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Garcia-Teruel, Anna & Rinaldi, Giovanni & Thies, Philipp R. & Johanning, Lars & Jeffrey, Henry, 2022. "Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance," Applied Energy, Elsevier, vol. 307(C).
    11. Robert Kasner & Weronika Kruszelnicka & Patrycja Bałdowska-Witos & Józef Flizikowski & Andrzej Tomporowski, 2020. "Sustainable Wind Power Plant Modernization," Energies, MDPI, vol. 13(6), pages 1-23, March.
    12. Elif Oğuz & Ayşe Eylül Şentürk, 2019. "Selection of the Most Sustainable Renewable Energy System for Bozcaada Island: Wind vs. Photovoltaic," Sustainability, MDPI, vol. 11(15), pages 1-33, July.
    13. Li, Qiangfeng & Duan, Huabo & Xie, Minghui & Kang, Peng & Ma, Yi & Zhong, Ruoyu & Gao, Tianming & Zhong, Weiqiong & Wen, Bojie & Bai, Feng & Vuppaladadiyam, Arun K., 2021. "Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Moussavi, S. & Barutha, P. & Dvorak, B., 2023. "Environmental life cycle assessment of a novel offshore wind energy design project: A United States based case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Ferreira, Victor J. & Benveniste, Gabriela & Rapha, José I. & Corchero, Cristina & Domínguez-García, Jose Luis, 2023. "A holistic tool to assess the cost and environmental performance of floating offshore wind farms," Renewable Energy, Elsevier, vol. 216(C).
    16. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    17. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    18. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    19. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    20. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15533-:d:980686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.