IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14732-d967002.html
   My bibliography  Save this article

Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm

Author

Listed:
  • Chunbo Li

    (Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

  • Yuwei Dong

    (Department of Mechanical and Electronic Engineering, Jiangsu Vocational and Technical College of Finance and Economics, Huai’an 223003, China)

  • Xuelong Fu

    (Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

  • Yalan Zhang

    (Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

  • Juan Du

    (Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

Abstract

Renewable and distributed power generation have been acknowledged as options for the safe, secure, sustainable, and cost-effective production, delivery, and consumption of energy in future low-carbon cities. This research introduces the Dynamic Coyote Search Algorithm (DCSA)-based optimal scheduling of distributed energy systems for home energy management systems. According to the heat storage properties of the building, a smart building energy model is established and introduced into the optimal scheduling of the distributed energy system in order to optimize the adjustment of the room temperature within the user’s acceptable room temperature range. The DCSA algorithm used is to minimize the daily comprehensive operating cost, including environmental factors. According to the simulation results, the impact of smart energy storage on scheduling is analyzed, and the results show that the optimal scheduling of building smart energy storage participating in the system reduces the total cost by about 3.8%. In addition, the DCSA has a significantly faster convergence speed than the original coyote algorithm.

Suggested Citation

  • Chunbo Li & Yuwei Dong & Xuelong Fu & Yalan Zhang & Juan Du, 2022. "Optimal Scheduling of Distributed Energy System for Home Energy Management System Based on Dynamic Coyote Search Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14732-:d:967002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    2. Ahmed N. Abdalla & Yongfeng Ju & Muhammad Shahzad Nazir & Hai Tao, 2022. "A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    3. Qi, Ning & Cheng, Lin & Xu, Helin & Wu, Kuihua & Li, XuLiang & Wang, Yanshuo & Liu, Rui, 2020. "Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Hammam Mohammed Al-Madani & Yudi Fernando & Ming-Lang Tseng, 2022. "Assuring Energy Reporting Integrity: Government Policy’s Past, Present, and Future Roles," Sustainability, MDPI, vol. 14(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    2. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    3. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    4. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    5. Feng, Wenxiu, 2023. "Risk Management of Energy Communities with Hydrogen Production and Storage Technologies," DES - Working Papers. Statistics and Econometrics. WS 36274, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Gao, Qingchen & Bao, Zhiming & Li, Weizhuo & Gong, Zhichao & Fan, Linhao & Jiao, Kui, 2024. "Performance analysis and gradient-porosity electrode design of vanadium redox flow batteries based on CFD simulations under open-source environment," Energy, Elsevier, vol. 289(C).
    7. Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
    8. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    9. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    10. Guntram Pressmair & Christof Amann & Klemens Leutgöb, 2021. "Business Models for Demand Response: Exploring the Economic Limits for Small- and Medium-Sized Prosumers," Energies, MDPI, vol. 14(21), pages 1-28, October.
    11. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    12. Jiang, Qian & Mu, Yunfei & Jia, Hongjie & Cao, Yan & Wang, Zibo & Wei, Wei & Hou, Kai & Yu, Xiaodan, 2022. "A Stackelberg Game-based planning approach for integrated community energy system considering multiple participants," Energy, Elsevier, vol. 258(C).
    13. Riyadh Kamil Chillab & Aqeel S. Jaber & Mouna Ben Smida & Anis Sakly, 2023. "Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    14. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    15. Lucio Laureti & Alessandro Massaro & Alberto Costantiello & Angelo Leogrande, 2023. "The Impact of Renewable Electricity Output on Sustainability in the Context of Circular Economy: A Global Perspective," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    16. Wang, Yanjia & Xu, Chao & Xie, Da & Gu, Chenghong & Zhao, Pengfei & Gong, Jinxia & Pan, Mingjie & Wang, Xitian, 2023. "A novel scheduling strategy for virtual power plant based on power market dynamic triggers," Applied Energy, Elsevier, vol. 350(C).
    17. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    18. Feng, Wenxiu & Ruiz, Carlos, 2023. "Risk management of energy communities with hydrogen production and storage technologies," Applied Energy, Elsevier, vol. 348(C).
    19. Xu, Jiuping & Tian, Yalou & Wang, Fengjuan & Yang, Guocan & Zhao, Chuandang, 2024. "Resilience-economy-environment equilibrium based configuration interaction approach towards distributed energy system in energy intensive industry parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    20. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14732-:d:967002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.