IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14633-d965672.html
   My bibliography  Save this article

Traceability of Mexican Avocado Supply Chain: A Microservice and Blockchain Technological Solution

Author

Listed:
  • Juan Carlos López-Pimentel

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico)

  • Miguel Alcaraz-Rivera

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico)

  • Rafael Granillo-Macías

    (Higher Education School Ciudad Sahagún, Autonomous University of the State of Hidalgo, Pachuca 43990, Hidalgo, Mexico)

  • Elias Olivares-Benitez

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico)

Abstract

Currently, the Mexican avocado supply chain has some social limitations that make the traceability process a difficult task and severely limits the regions that can add their harvest to the international market. We hypothesize that modernizing the traceability process and improving the trust of the final user could help in opening the market to other regions. This paper describes the Mexican avocado supply chain characteristics, identifies the actors involved in the supply chain, and emphasizes the problems that the current actors have when exporting them to the US market. On this basis, we propose a technological solution system to automate the traceability process. The system was designed to comply with the authority and consumer requirements. It proposes a combination of the benefits of traditional data traceability using Microservices architecture with a new layer of Blockchain auditing that will add value to current and new actors in every step of the supply chain. We contribute by proposing a model that adds value to the avocado supply chain with the following characteristics: Integrity, auditing service, dual traceability, transparency, and a front-end application with trust user-oriented. Our proofs demonstrate that the blockchain layer does not represent a considered high extra transaction cost; it could be regarded as despicable for the economy of the consumer considering costs and benefits.

Suggested Citation

  • Juan Carlos López-Pimentel & Miguel Alcaraz-Rivera & Rafael Granillo-Macías & Elias Olivares-Benitez, 2022. "Traceability of Mexican Avocado Supply Chain: A Microservice and Blockchain Technological Solution," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14633-:d:965672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Frank Yiannas, 2018. "A New Era of Food Transparency Powered by Blockchain," Innovations: Technology, Governance, Globalization, MIT Press, vol. 12(1-2), pages 46-56, Summer-Fa.
    3. Jiang Duan & Chen Zhang & Yu Gong & Steve Brown & Zhi Li, 2020. "A Content-Analysis Based Literature Review in Blockchain Adoption within Food Supply Chain," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    4. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Chunguang & Sarkis, Joseph, 2022. "A critical review of formal analytical modeling for blockchain technology in production, operations, and supply chains: Harnessing progress for future potential," International Journal of Production Economics, Elsevier, vol. 250(C).
    2. Aditi S. Saha & Rakesh D. Raut & Vinay Surendra Yadav & Abhijit Majumdar, 2022. "Blockchain Changing the Outlook of the Sustainable Food Supply Chain to Achieve Net Zero?," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    3. Zhu, Qingyun & Bai, Chunguang & Sarkis, Joseph, 2022. "Blockchain technology and supply chains: The paradox of the atheoretical research discourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Tiwari, Sunil & Sharma, Pankaj & Choi, Tsan-Ming & Lim, Andrew, 2023. "Blockchain and third-party logistics for global supply chain operations: Stakeholders’ perspectives and decision roadmap," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Zhiwen Su & Mingyu Zhang & Wenbing Wu, 2021. "Visualizing Sustainable Supply Chain Management: A Systematic Scientometric Review," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    6. Yasanur Kayikci & Nazlican Gozacan‐Chase & Abderahman Rejeb & Kaliyan Mathiyazhagan, 2022. "Critical success factors for implementing blockchain‐based circular supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3595-3615, November.
    7. Jacob Lohmer & Elias Ribeiro da Silva & Rainer Lasch, 2022. "Blockchain Technology in Operations & Supply Chain Management: A Content Analysis," Sustainability, MDPI, vol. 14(10), pages 1-88, May.
    8. Lewis A. Njualem, 2022. "Leveraging Blockchain Technology in Supply Chain Sustainability: A Provenance Perspective," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    9. Peter Sasitharan Gandhi Maniam & Catherine Prentice & Anne-Marie Sassenberg & Jeffrey Soar, 2023. "Identifying an Optimal Model for Blockchain Technology Adoption in the Agricultural Sector," Logistics, MDPI, vol. 7(3), pages 1-19, September.
    10. Lai, Kee-hung & Feng, Yunting & Zhu, Qinghua, 2023. "Digital transformation for green supply chain innovation in manufacturing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    11. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    12. Mona Haji & Laoucine Kerbache & Mahaboob Muhammad & Tareq Al-Ansari, 2020. "Roles of Technology in Improving Perishable Food Supply Chains," Logistics, MDPI, vol. 4(4), pages 1-24, December.
    13. Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
    14. Dong, Ciwei & Huang, Qianzhi & Pan, Yuqing & Ng, Chi To & Liu, Renjun, 2023. "Logistics outsourcing: Effects of greenwashing and blockchain technology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    15. Jinxuan Song & Xu Yan, 2023. "Impact of Government Subsidies, Competition, and Blockchain on Green Supply Chain Decisions," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    16. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    17. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Yuling Sun & Xiaomei Song & Yihao Jiang & Jian Guo, 2023. "Strategy Analysis of Fresh Agricultural Enterprises in a Competitive Circumstance: The Impact of Blockchain and Consumer Traceability Preferences," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    19. Mladen Krstić & Giulio Paolo Agnusdei & Snežana Tadić & Pier Paolo Miglietta, 2023. "Prioritization of e-traceability drivers in the agri-food supply chains," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-26, December.
    20. Fink, Alexander A. & Klöckner, Maximilian & Räder, Tobias & Wagner, Stephan M., 2022. "Supply chain management accelerators: Types, objectives, and key design features," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14633-:d:965672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.