IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14333-d961109.html
   My bibliography  Save this article

Exploring the Use of Tobacco Waste as a Metal Ion Adsorbent and Substrate for Sulphate-Reducing Bacteria during the Treatment of Acid Mine Drainage

Author

Listed:
  • Hamlton Dovorogwa

    (School of Civil and Environmental Engineering, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa)

  • Kevin Harding

    (School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa)

Abstract

Treatment of acid mine drainage (AMD) was successfully demonstrated using tobacco waste (dust and stem) as a metal cation adsorbent, pH modifier and carbon source for sulphate-reducing bacteria (SRB). Synthetic and industrial AMD wastewaters were used in batch adsorption and SRB facilitated bioremediation experiments. Up to absorbent loading of 80 g/L, metal removal increased. However, increases above 160 g/L did not offer a proportional increase. At an adsorbent loading of 80 g/L, the highest metal removals of 38, 41, 31 and 43% for iron, nickel, copper and zinc respectively were achieved. The iron data fitted well to the Langmuir adsorption isotherm while the Sips adsorption isotherm better-described nickel, copper and zinc adsorption to tobacco waste. SRBs used were able to use tobacco waste as a carbon source while reducing sulphates to metal sulphides in acid mine drainage. In the presence of SRBs, metal removals by both adsorption and sulphide precipitation were 95, 97, 70 and 93% for iron, nickel, copper and zinc, respectively. Copper, however, demonstrated lower removal yields in both adsorption and bioremediation. Bioremediation improved acid mine drainage pH by 2.05 units. The exponential decay function could model both the metal and sulphate removal perfectly. It was concluded that tobacco waste can be confidently used as an adsorbent and carbon source for sulphate-reducing bacteria while facilitating AMD biological treatment.

Suggested Citation

  • Hamlton Dovorogwa & Kevin Harding, 2022. "Exploring the Use of Tobacco Waste as a Metal Ion Adsorbent and Substrate for Sulphate-Reducing Bacteria during the Treatment of Acid Mine Drainage," Sustainability, MDPI, vol. 14(21), pages 1-11, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14333-:d:961109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burman, Nicholas W. & Sheridan, Craig M. & Harding, Kevin G., 2020. "Feasibility assessment of the production of bioethanol from lignocellulosic biomass pretreated with acid mine drainage (AMD)," Renewable Energy, Elsevier, vol. 157(C), pages 1148-1155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilherme, Ederson Paulo Xavier & Zanphorlin, Leticia Maria & Sousa, Amanda Silva & Miyamoto, Renan Yuji & Bruziquesi, Carlos Giovani Oliveira & Mesquita, Bruna Mara Aparecida de Carvalho & Santos, Se, 2022. "Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Sacchar," Renewable Energy, Elsevier, vol. 182(C), pages 274-284.
    2. Yuan, Xinchuan & Chen, Xiangxue & Shen, Guannan & Chen, Sitong & Yu, Jianming & Zhai, Rui & Xu, Zhaoxian & Jin, Mingjie, 2022. "Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production," Renewable Energy, Elsevier, vol. 182(C), pages 377-389.
    3. Maghzian, Ali & Aslani, Alireza & Zahedi, Rahim & Yaghoubi, Milad, 2023. "How to effectively produce value-added products from microalgae?," Renewable Energy, Elsevier, vol. 204(C), pages 262-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14333-:d:961109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.