IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14235-d959331.html
   My bibliography  Save this article

An Optimization Method of Urban Rail Train Operation Scheme Based on the Control of Load Factor

Author

Listed:
  • Fei Dou

    (Beijing Mass Transit Railway Operation Corp. Ltd., Beijing 100044, China
    Beijing Key Laboratory of Subway Operation Safety Technology, Beijing 100044, China)

  • Huiru Zhang

    (Beijing Mass Transit Railway Operation Corp. Ltd., Beijing 100044, China
    Beijing Key Laboratory of Subway Operation Safety Technology, Beijing 100044, China)

  • Haodong Yin

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Yun Wei

    (Beijing Mass Transit Railway Operation Corp. Ltd., Beijing 100044, China
    Beijing Key Laboratory of Subway Operation Safety Technology, Beijing 100044, China)

  • Yao Ning

    (Beijing Mass Transit Railway Operation Corp. Ltd., Beijing 100044, China
    Beijing Key Laboratory of Subway Operation Safety Technology, Beijing 100044, China)

Abstract

The train operation scheme of urban rail transit is a transportation plan formulated to fully meet the needs of passenger travel under the constraints of signal system capacity, turn-back capacity, and so on. Facing an unexpected epidemic, it was particularly important for passengers to travel safely and in an orderly manner. With an ever-increasing passenger flow due to work resumption, this paper proposes an optimization method for the urban rail train operation scheme based on the control of the target load factor according to the preparation process of the train operation scheme. The proposed method obtained the optimal train running interval and routing scheme based on analyzing the spatiotemporal distribution of passenger flow. The north section of Beijing Subway Line 8 was taken as an example. After optimization, for trains in the morning peak hour in the downward direction, the maximum load factor for the collinear section of the full-length routing and short-turn routing was reduced by 21%, and the matching effect of the transportation capacity and volume in the non-collinear was improved. In general, the maximum load factor in the downward direction after optimization was 80%, which met the target control requirements. The results show that the optimization method plays an important role in balancing the load factor in each cross-section and realizing the optimal coupling of passenger flow and train flow.

Suggested Citation

  • Fei Dou & Huiru Zhang & Haodong Yin & Yun Wei & Yao Ning, 2022. "An Optimization Method of Urban Rail Train Operation Scheme Based on the Control of Load Factor," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14235-:d:959331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    3. Huimin Niu & Minghui Zhang, 2012. "An Optimization to Schedule Train Operations with Phase-Regular Framework for Intercity Rail Lines," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-13, November.
    4. David Canca & Eva Barrena & Gilbert Laporte & Francisco A. Ortega, 2016. "A short-turning policy for the management of demand disruptions in rapid transit systems," Annals of Operations Research, Springer, vol. 246(1), pages 145-166, November.
    5. Yang, Xin & Chen, Anthony & Ning, Bin & Tang, Tao, 2017. "Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 22-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaona Zhang & Fu Wang & Weidi Xu & Yin Wang & Jingwen Luo & Xinyu Chen & Manqing Ye, 2023. "Research on the Evaluation of Rail Transit Transfer System Based on the Time Value," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    2. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Gonzalo Sánchez-Contreras & Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala, 2023. "A Two-Level Fuzzy Multi-Objective Design of ATO Driving Commands for Energy-Efficient Operation of Metropolitan Railway Lines," Sustainability, MDPI, vol. 15(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    3. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    4. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.
    5. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    6. Zhao, Yaqiong & Li, Dewei & Yin, Yonghao & Zhao, Xiaoli, 2023. "Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    7. Shi, Jungang & Yang, Jing & Yang, Lixing & Tao, Lefeng & Qiang, Shengjie & Di, Zhen & Guo, Junhua, 2023. "Safety-oriented train timetabling and stop planning with time-varying and elastic demand on overcrowded commuter metro lines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Limsawasd, Charinee & Athigakunagorn, Nathee & Khathawatcharakun, Phattadon & Boonmee, Atiwat, 2022. "Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak," Transport Policy, Elsevier, vol. 126(C), pages 225-238.
    9. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    10. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    12. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    13. Seda Yanık & Salim Yılmaz, 2023. "Optimal design of a bus route with short-turn services," Public Transport, Springer, vol. 15(1), pages 169-197, March.
    14. Tangjian Wei & Feng Shi & Guangming Xu, 2019. "Estimation of Time-Varying Passenger Demand for High Speed Rail System," Complexity, Hindawi, vol. 2019, pages 1-24, March.
    15. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    16. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    17. Yuzhao Zhang & Jianqiang Wang & Wenjuan Cai, 2019. "Passengers’ Demand Characteristics Experimental Analysis of EMU Trains with Sleeping Cars in Northwest China," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    18. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
    19. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14235-:d:959331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.