IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13829-d952431.html
   My bibliography  Save this article

Buffer-Aided Relaying Strategies for Two-Way Wireless Networks

Author

Listed:
  • Vignon Fidele Adanvo

    (National Institute of Telecommunications (INATEL), Santa Rita Sapucai 37540-000, MG, Brazil)

  • Samuel Mafra

    (National Institute of Telecommunications (INATEL), Santa Rita Sapucai 37540-000, MG, Brazil)

  • Samuel Montejo-Sánchez

    (Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana (UTEM), Santiago 8940577, Chile)

  • Evelio M. García Fernández

    (Department of Electrical Engineering, Federal University of Parana, Curitiba 81531-990, PR, Brazil)

  • Richard Demo Souza

    (Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil)

Abstract

The energy and time efficiency of wireless sensor networks (WSNs) is frequently affected by the low reliability of their links. To mitigate the outage probability, cooperation topologies are used. However, these topologies have particular challenges since the relay consumes energy in assisting a foreign communication, and the successful transmission in each direction is conditioned to the availability of the two segments involved in the communication. To overcome the temporary unavailability of a link, the use of buffers in the relay has been proposed, but energy and time efficiency remain a challenge for basic configurations. We propose two-way buffer-aided relaying strategies that exploit the presence of buffers in the different nodes that participate in the communication, as well as the efficient use of buffer capacity. The proposed strategies make the decision to forward the messages in one of the communication directions or broadcast coded messages based on buffer and channel state information. Firstly, we evaluate the impact of considering the use of buffers in the transmitter nodes. Then, we propose and evaluate the impact of the full and joint use of the entire buffer capacity to assist communication in both directions. Finally, we evaluate the performance of a system that exploits both the use of full and joint buffering and the presence of buffering in the transmitter. The results show that better performance, in terms of outage probability, is obtained by the third strategy; since it allows the buffer capacity to be exploited to a greater extent in the most urgent direction at each moment, as well as to select the start of each transmission to a viable communication opportunity. This represents a notable benefit in terms of energy and time efficiency for WSNs since unnecessary transmission of information is avoided, the number of idle slots decreases, and the amount of information per unit of time and energy increases.

Suggested Citation

  • Vignon Fidele Adanvo & Samuel Mafra & Samuel Montejo-Sánchez & Evelio M. García Fernández & Richard Demo Souza, 2022. "Buffer-Aided Relaying Strategies for Two-Way Wireless Networks," Sustainability, MDPI, vol. 14(21), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13829-:d:952431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ridha Ouni & Kashif Saleem, 2022. "Framework for Sustainable Wireless Sensor Network Based Environmental Monitoring," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    2. Javier Rodríguez-Robles & Álvaro Martin & Sergio Martin & José A. Ruipérez-Valiente & Manuel Castro, 2020. "Autonomous Sensor Network for Rural Agriculture Environments, Low Cost, and Energy Self-Charge," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    3. Jangsik Bae & Meonghun Lee & Changsun Shin, 2019. "A Data-Based Fault-Detection Model for Wireless Sensor Networks," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    4. Alireza Abdollahi & Karim Rejeb & Abderahman Rejeb & Mohamed M. Mostafa & Suhaiza Zailani, 2021. "Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    5. Salman Naseer & William Liu & Nurul I. Sarkar & Muhammad Shafiq & Jin-Ghoo Choi, 2021. "Smart City Taxi Trajectory Coverage and Capacity Evaluation Model for Vehicular Sensor Networks," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    6. Ubaid Ullah & Anwar Khan & Mahdi Zareei & Ihsan Ali & Hasan Ali Khattak & Ikram Ud Din, 2019. "Energy-Effective Cooperative and Reliable Delivery Routing Protocols for Underwater Wireless Sensor Networks," Energies, MDPI, vol. 12(13), pages 1-22, July.
    7. Shujaat Ali Khan Tanoli & Mubashir Rehman & Muhammad Bilal Khan & Ihtesham Jadoon & Farman Ali Khan & Faiza Nawaz & Syed Aziz Shah & Xiaodong Yang & Ali Arshad Nasir, 2018. "An Experimental Channel Capacity Analysis of Cooperative Networks Using Universal Software Radio Peripheral (USRP)," Sustainability, MDPI, vol. 10(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zixuan Ding & Qi Xie, 2023. "Provably Secure Dynamic Anonymous Authentication Protocol for Wireless Sensor Networks in Internet of Things," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    2. Zhou, Xin & Chen, Guici & Zhu, Song & Wen, Shiping, 2023. "Distributed event-triggered finite-time H∞ filtering for switched systems on sensor networks with two-channel network attacks and asynchronous modes," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    3. Monica Karel Huerta & Jessica Garizurieta & Rubén González & Luis-Ángel Infante & Melina Horna & Renato Rivera & Roger Clotet, 2023. "A Long-Distance WiFi Network as a Tool to Promote Social Inclusion in Southern Veracruz, Mexico," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    4. Jules Degila & Ida Sèmévo Tognisse & Anne-Carole Honfoga & Sèton Calmette Ariane Houetohossou & Fréjus Ariel Kpedetin Sodedji & Hospice Gérard Gracias Avakoudjo & Souand Peace Gloria Tahi & Achille Ep, 2023. "A Survey on Digital Agriculture in Five West African Countries," Agriculture, MDPI, vol. 13(5), pages 1-15, May.
    5. Kazeem B. Adedeji & Yskandar Hamam, 2020. "Cyber-Physical Systems for Water Supply Network Management: Basics, Challenges, and Roadmap," Sustainability, MDPI, vol. 12(22), pages 1-30, November.
    6. Faraz Qasim & Doug Hyung Lee & Jongkuk Won & Jin-Kuk Ha & Sang Jin Park, 2021. "Development of Advanced Advisory System for Anomalies (AAA) to Predict and Detect the Abnormal Operation in Fired Heaters for Real Time Process Safety and Optimization," Energies, MDPI, vol. 14(21), pages 1-24, November.
    7. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    8. Setareh Boshrouei Shargh & Mostafa Zandieh & Ashkan Ayough & Farbod Farhadi, 2024. "Scheduling in services: a review and bibliometric analysis," Operations Management Research, Springer, vol. 17(2), pages 754-783, June.
    9. Benedetta Fasciolo & Luigi Panza & Franco Lombardi, 2024. "Exploring the Integration of Industry 4.0 Technologies in Agriculture: A Comprehensive Bibliometric Review," Sustainability, MDPI, vol. 16(20), pages 1-20, October.
    10. Abderahman Rejeb & John G. Keogh & Wayne Martindale & Damion Dooley & Edward Smart & Steven Simske & Samuel Fosso Wamba & John G. Breslin & Kosala Yapa Bandara & Subhasis Thakur & Kelly Liu & Bridgett, 2022. "Charting Past, Present, and Future Research in the Semantic Web and Interoperability," Future Internet, MDPI, vol. 14(6), pages 1-32, May.
    11. Abderahman Rejeb & Karim Rejeb & Andrea Appolloni & Mohammad Iranmanesh & Horst Treiblmaier & Sandeep Jagtap, 2022. "Exploring Food Supply Chain Trends in the COVID-19 Era: A Bibliometric Review," Sustainability, MDPI, vol. 14(19), pages 1-33, September.
    12. Georgios Samourgkanidis & Kostantis Varvatsoulis & Dimitris Kouzoudis, 2021. "The Effect of the Thermal Annealing Process to the Sensing Performance of Magnetoelastic Ribbon Materials," Sustainability, MDPI, vol. 13(24), pages 1-10, December.
    13. Ning Cui & Jiaxuan Li & Jun Tu & Maochun Zhou, 2022. "Evolutionary Game Analysis of Non-Governmental Organizations Participating in Garbage Management under the Background of Internet of Things," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    14. Junaid Qadir & Anwar Khan & Mahdi Zareei & Cesar Vargas-Rosales, 2019. "Energy Balanced Localization-Free Cooperative Noise-Aware Routing Protocols for Underwater Wireless Sensor Networks," Energies, MDPI, vol. 12(22), pages 1-24, November.
    15. P. V. Thayyib & Rajesh Mamilla & Mohsin Khan & Humaira Fatima & Mohd Asim & Imran Anwar & M. K. Shamsudheen & Mohd Asif Khan, 2023. "State-of-the-Art of Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary," Sustainability, MDPI, vol. 15(5), pages 1-38, February.
    16. Krzysztof Wójcicki & Marta Biegańska & Beata Paliwoda & Justyna Górna, 2022. "Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities—A Review," Energies, MDPI, vol. 15(5), pages 1-24, February.
    17. Awais Ali & Tajamul Hussain & Noramon Tantashutikun & Nurda Hussain & Giacomo Cocetta, 2023. "Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
    18. Tanzila Saba & Khalid Haseeb & Ikram Ud Din & Ahmad Almogren & Ayman Altameem & Suliman Mohamed Fati, 2020. "EGCIR: Energy-Aware Graph Clustering and Intelligent Routing Using Supervised System in Wireless Sensor Networks," Energies, MDPI, vol. 13(16), pages 1-15, August.
    19. Yousaf Bin Zikria & Sung Won Kim & Muhammad Khalil Afzal & Haoxiang Wang & Mubashir Husain Rehmani, 2018. "5G Mobile Services and Scenarios: Challenges and Solutions," Sustainability, MDPI, vol. 10(10), pages 1-9, October.
    20. Rafael Cardona Huerta & Fernando Moreu & Jose Antonio Lozano Galant, 2021. "Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficient Wireless Intelligent Sensor," Sustainability, MDPI, vol. 13(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13829-:d:952431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.