IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13669-d949893.html
   My bibliography  Save this article

Mechanical Strength of Saline Sandy Soils Stabilized with Alkali-Activated Cements

Author

Listed:
  • Hamid Reza Razeghi

    (School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran)

  • Pooria Ghadir

    (School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran)

  • Akbar A. Javadi

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

Abstract

Saline soils usually cannot satisfy the requirements of engineering projects because of their inappropriate geotechnical properties. For this reason, they have always been known as one of the problematic soils worldwide. Moreover, the lack of access to normal water has intensified the use of saline water resources such as seawater in many construction and mining projects. Although cement stabilization is frequently used to improve the engineering properties of saline soils, Portland cement’s usage as a binder is constrained by its negative consequences, particularly on the environment. In this line, the effects of NaCl on the microstructural and mechanical properties of alkali-activated volcanic ash/slag-stabilized sandy soil were investigated in this study. Moreover, the effects of binder type, slag replacement, curing time, curing condition, and NaCl content on the mechanical strength of stabilized soils were examined. In addition, microstructural analyses, including XRD, FTIR, and SEM–EDS mapping tests, were performed to understand the physical and chemical interaction of chloride ions and alkali-activated cements. The results show that alkali-activated slag can be a sustainable alternative to Portland cement for soil stabilization projects in saline environments. The increase in sodium chloride (NaCl) content up to 1 wt.% caused the strength development up to 244% in specimens with 50 and 100 wt.% slag, and adding more NaCl had no significant effect on the strength in all curing conditions. Microstructural investigations showed that the replacement of volcanic ash with slag resulted in the formation of C-S-H and C-A-S-H gels that reduced the porosity of the samples and increased mechanical strength. Furthermore, surface adsorption and chemical encapsulation mechanisms co-occurred in stabilized soil samples containing slag and volcanic ash.

Suggested Citation

  • Hamid Reza Razeghi & Pooria Ghadir & Akbar A. Javadi, 2022. "Mechanical Strength of Saline Sandy Soils Stabilized with Alkali-Activated Cements," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13669-:d:949893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13669/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahir Azimi & Vahab Toufigh, 2023. "Influence of Blast Furnace Slag on Pore Structure and Transport Characteristics in Low-Calcium Fly-Ash-Based Geopolymer Concrete," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13669-:d:949893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.