IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13345-d944645.html
   My bibliography  Save this article

Safety and Protection Measures of Underground Non-Coal Mines with Mining Depth over 800 m: A Case Study in Shandong, China

Author

Listed:
  • Li Cheng

    (Deep Mining Laboratory of Shandong Gold Group Co., Yantai 264000, China)

  • Qinzheng Wu

    (Deep Mining Laboratory of Shandong Gold Group Co., Yantai 264000, China)

  • Haotian Li

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Kexu Chen

    (Deep Mining Laboratory of Shandong Gold Group Co., Yantai 264000, China)

  • Chunlong Wang

    (Deep Mining Laboratory of Shandong Gold Group Co., Yantai 264000, China)

  • Xingquan Liu

    (Deep Mining Laboratory of Shandong Gold Group Co., Yantai 264000, China)

  • Xuelong Li

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Jingjing Meng

    (Department of Civil, Environmental and Natural Resources Engineering, LuleƄ University of Technology, 971 87 LuleƄ, Sweden)

Abstract

With the increase in mining depth, the risk of ground pressure disasters in yellow gold mines is becoming more and more serious. This paper carries out a borehole test for the pressure behavior in a non-coal mining area with a mining depth of more than 800 m in the Jiaodong area. The test results show that under a depth of 1050 m, the increase in the vertical principal stress is the same as the increase in the minimum horizontal principal stress, which is about 3 MPa per 100 m. When the depth increases to 1350 m, the vertical principal stress increases by about 3% per 100 m, and the self-weight stress and the maximum horizontal principal stress maintain a steady growth rate of about 3 MPa per 100 m. In addition, based on the test results, the operation of the ground pressure monitoring system in each mine is investigated. The investigation results show that in some of the roadway and stope mines with depths of more than 800 m, varying degrees of rock mass instability have occurred, and a few mines have had sporadic slight rockbursts, accounting for about 5%. There was a stress concentration area in the lower part of the goaf formed in the early stage of mining, and slight rockburst phenomena such as rock mass ejection have occurred; meanwhile, the area stability for normal production and construction was good, and there was no obvious ground pressure. This paper compares the researched mines horizontally as well as to international high-level mines and puts forward some suggestions, including: carrying out ground pressure investigations and improving the level of intelligence, which would provide countermeasures to balance the safety risks of deep mining, reducing all kinds of safety production accidents and providing a solid basis for risk prevention and supervision.

Suggested Citation

  • Li Cheng & Qinzheng Wu & Haotian Li & Kexu Chen & Chunlong Wang & Xingquan Liu & Xuelong Li & Jingjing Meng, 2022. "Safety and Protection Measures of Underground Non-Coal Mines with Mining Depth over 800 m: A Case Study in Shandong, China," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13345-:d:944645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Wang & Xuelong Li & Qizhi Qin, 2022. "Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face," Energies, MDPI, vol. 15(18), pages 1-20, September.
    2. Chun Yang & Keping Zhou & Zhichao Li & Xin Xiong & Yun Lin & Zengwu Luo, 2020. "Numerical Modeling on the Fracturing and Energy Evolution of Large Deep Underground Openings Subjected to Dynamic Disturbance," Energies, MDPI, vol. 13(22), pages 1-18, November.
    3. Gang Liu & Fengshan Ma & Haijun Zhao & Guang Li & Jiayuan Cao & Jie Guo, 2019. "Study on the Fracture Distribution Law and the Influence of Discrete Fractures on the Stability of Roadway Surrounding Rock in the Sanshandao Coastal Gold Mine, China," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Liu & Fengshan Ma & Jie Guo & Guang Li & Yewei Song & Yang Wan, 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    2. Wenlong Li & Shihao Tu & Hongsheng Tu & Xun Liu & Kaijun Miao & Hongbin Zhao & Jieyang Ma & Long Tang & Yan Li, 2022. "A New Method to Assess Thick, Hard Roof-Induced Rock Burst Risk Based on Mining Speed Effect on Key Energy Strata," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    3. Mingkun Pang & Hongyu Pan & Hang Zhang & Tianjun Zhang, 2022. "Experimental Investigation of the Effect of Groundwater on the Relative Permeability of Coal Bodies around Gas Extraction Boreholes," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    4. Xuelong Li & Xinyuan Zhang & Wenlong Shen & Qingdong Zeng & Peng Chen & Qizhi Qin & Zhen Li, 2023. "Research on the Mechanism and Control Technology of Coal Wall Sloughing in the Ultra-Large Mining Height Working Face," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    5. Xiaoyan Sun & Qican Ran & Hao Liu & Yanhao Ning & Tengfei Ma, 2023. "Characteristics of Stress-Displacement-Fracture Multi-Field Evolution around Gas Extraction Borehole," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Pang, Mingkun & Pan, Hongyu & Ji, Bingnan & Zhang, Hang & Zhang, Tianjun, 2023. "Experimental investigation of flow regime transition characteristics of fractured coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 270(C).
    7. Jun Jia & Xiangjun Pei & Gang Liu & Guojun Cai & Xiaopeng Guo & Bo Hong, 2023. "Failure Mechanism of Anti-Dip Layered Soft Rock Slope under Rainfall and Excavation Conditions," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    8. Jian Hao & Anfa Chen & Xuelong Li & Hua Bian & Guanghua Zhou & Zhenguo Wu & Linjun Peng & Jianquan Tang, 2022. "Analysis of Surrounding Rock Control Technology and Its Application on a Dynamic Pressure Roadway in a Thick Coal Seam," Energies, MDPI, vol. 15(23), pages 1-23, November.
    9. Rui Yu & Jiawei Qian & Liang Liu & Huasheng Zha & Nan Li, 2022. "Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing," IJERPH, MDPI, vol. 19(21), pages 1-12, November.
    10. Qiuping Li & Jie Liu & Shouqing Lu & Zaiquan Wang & Hao Wang & Yimeng Wu & Yupu Wang & Di Ying & Mingjie Li, 2022. "Influence of Confining Pressure on Nonlinear Failure Characteristics of Coal Subjected to Triaxial Compression," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    11. Zheyuan Feng & Qi Xu & Xinyu Luo & Ruyu Huang & Xin Liao & Qiang Tang, 2022. "Microstructure, Deformation Characteristics and Energy Analysis of Mudstone under Water Absorption Process," Energies, MDPI, vol. 15(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13345-:d:944645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.