IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14291-d960428.html
   My bibliography  Save this article

Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing

Author

Listed:
  • Rui Yu

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    Wangjialing Coal Mine, China Coal Huajin Group Co., Ltd., Hejin 043300, China)

  • Jiawei Qian

    (School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
    College of Oceanography, Hohai University, Nanjing 210098, China)

  • Liang Liu

    (The Fifth Geological Brigade of Jiangxi Geological Bureau, Xinyu 338000, China)

  • Huasheng Zha

    (School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China)

  • Nan Li

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Microseismic monitoring systems have been widely installed to monitor potential water hazards in limestone of the coal floor. The temporal and spatial distribution of rock fracture-induced microseismic events can be used as early warning indicators of potential water inrush from the coal floor. We established a microseismic monitoring system in the working face of Wangjialing coal mine. Besides traditional fluid-independent rock fracture-induced microseismic waveforms, fluid-dependent hybrid-frequency microseismic waveforms also play important roles in determining the microseismic precursors of water inrush. Hybrid-frequency microseismic waveforms have a sharp P wave and no obvious S wave phase. We infer that the first high-frequency signal is caused by the brittleness of the rock in the floor under the influence of the water pressure. The second low-frequency signal is caused by the water oscillations in the fractures. These hybrid-frequency waveforms represent the development of fracturing. In addition, the lifting height of the complete aquiclude above the confined water is very limited, and the water inrush from the floor is often closely related to these hidden faults. Therefore, the activation signal of hidden faults in the working face of coal mining can be monitored to effectively warn about the water inrush from the coal seam floor caused by faults. By analyzing different microseismic events, the monitoring and early warning of water disaster in the coal mine floor can be improved. This will help in taking measures in advance within the mine to ensure personnel safety and to reduce property losses.

Suggested Citation

  • Rui Yu & Jiawei Qian & Liang Liu & Huasheng Zha & Nan Li, 2022. "Microseismic Precursors of Coal Mine Water Inrush Characterized by Different Waveforms Manifest as Dry to Wet Fracturing," IJERPH, MDPI, vol. 19(21), pages 1-12, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14291-:d:960428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Wang & Xuelong Li & Qizhi Qin, 2022. "Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face," Energies, MDPI, vol. 15(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenlong Li & Shihao Tu & Hongsheng Tu & Xun Liu & Kaijun Miao & Hongbin Zhao & Jieyang Ma & Long Tang & Yan Li, 2022. "A New Method to Assess Thick, Hard Roof-Induced Rock Burst Risk Based on Mining Speed Effect on Key Energy Strata," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    2. Mingkun Pang & Hongyu Pan & Hang Zhang & Tianjun Zhang, 2022. "Experimental Investigation of the Effect of Groundwater on the Relative Permeability of Coal Bodies around Gas Extraction Boreholes," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    3. Xuelong Li & Xinyuan Zhang & Wenlong Shen & Qingdong Zeng & Peng Chen & Qizhi Qin & Zhen Li, 2023. "Research on the Mechanism and Control Technology of Coal Wall Sloughing in the Ultra-Large Mining Height Working Face," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    4. Xiaoyan Sun & Qican Ran & Hao Liu & Yanhao Ning & Tengfei Ma, 2023. "Characteristics of Stress-Displacement-Fracture Multi-Field Evolution around Gas Extraction Borehole," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Pang, Mingkun & Pan, Hongyu & Ji, Bingnan & Zhang, Hang & Zhang, Tianjun, 2023. "Experimental investigation of flow regime transition characteristics of fractured coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 270(C).
    6. Jian Hao & Anfa Chen & Xuelong Li & Hua Bian & Guanghua Zhou & Zhenguo Wu & Linjun Peng & Jianquan Tang, 2022. "Analysis of Surrounding Rock Control Technology and Its Application on a Dynamic Pressure Roadway in a Thick Coal Seam," Energies, MDPI, vol. 15(23), pages 1-23, November.
    7. Qiuping Li & Jie Liu & Shouqing Lu & Zaiquan Wang & Hao Wang & Yimeng Wu & Yupu Wang & Di Ying & Mingjie Li, 2022. "Influence of Confining Pressure on Nonlinear Failure Characteristics of Coal Subjected to Triaxial Compression," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    8. Zheyuan Feng & Qi Xu & Xinyu Luo & Ruyu Huang & Xin Liao & Qiang Tang, 2022. "Microstructure, Deformation Characteristics and Energy Analysis of Mudstone under Water Absorption Process," Energies, MDPI, vol. 15(20), pages 1-17, October.
    9. Li Cheng & Qinzheng Wu & Haotian Li & Kexu Chen & Chunlong Wang & Xingquan Liu & Xuelong Li & Jingjing Meng, 2022. "Safety and Protection Measures of Underground Non-Coal Mines with Mining Depth over 800 m: A Case Study in Shandong, China," Sustainability, MDPI, vol. 14(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14291-:d:960428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.