IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13042-d939749.html
   My bibliography  Save this article

Implementation of EDGE Computing Platform in Feeder Terminal Unit for Smart Applications in Distribution Networks with Distributed Renewable Energies

Author

Listed:
  • Hsin-Ching Chih

    (Department of Industrial Education and Technology, Bao-Shan Campus, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 500, Taiwan)

  • Wei-Chen Lin

    (Department of Industrial Education and Technology, Bao-Shan Campus, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 500, Taiwan)

  • Wei-Tzer Huang

    (Department of Industrial Education and Technology, Bao-Shan Campus, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 500, Taiwan)

  • Kai-Chao Yao

    (Department of Industrial Education and Technology, Bao-Shan Campus, National Changhua University of Education, No. 2, Shi-Da Road, Changhua 500, Taiwan)

Abstract

Under the plan of net-zero carbon emissions in 2050, the high penetration of distributed renewable energies in distribution networks will cause the operation of more complicated distribution networks. The development of edge computing platforms will help the operator to monitor and compute the system status timely and locally, and it can ensure the security operation of the system. In this paper, a novel EDGE computing platform that is implemented by a graphics processing unit in the existing feeder terminal unit (FTU) is proposed for smart applications in distribution networks with distributed renewable energies and loads. This platform makes timely forecasts of the feeder status for the next seven days in accordance with historical weather, sun, and loading data. The forecast solver uses the machine learning long short-term memory (LSTM) method. Thereafter, the power calculation analyzers transform feeder topology into the circuit model for transient-state, steady-state, and symmetrical component analyses. An important-factor explainer parses the LSTM model into the concise value of each historical datum. All information transports to remote devices via the internet for the real-time monitor feature. The software stack of the EDGE platform consists of the database archive file system, time-series forecast solver, power flow analyzers, important-factor explainer, and message queuing telemetry transport (MQTT) protocol communication. All open-source software packages, such as SQLite, LSTM, ngspyce, Shapley Additive Explanations, and Paho-MQTT, form the aforementioned function. The developed EDGE forecast and power flow computing platform are helpful for achieving FTU becoming an Internet of Things component for smart operation in active distribution networks.

Suggested Citation

  • Hsin-Ching Chih & Wei-Chen Lin & Wei-Tzer Huang & Kai-Chao Yao, 2022. "Implementation of EDGE Computing Platform in Feeder Terminal Unit for Smart Applications in Distribution Networks with Distributed Renewable Energies," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13042-:d:939749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongyu Wang & Xiwen Cui & Dongxiao Niu, 2022. "Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    2. Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sizu Hou & Yisu Hou & Baikui Li & Ziqi Wang, 2023. "Fault Recovery Strategy for Power–Communication Coupled Distribution Network Considering Uncertainty," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    2. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).
    3. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    4. Chao Tan & Wenrui Tan & Yanjun Shen & Long Yang, 2023. "Multistep Wind Power Prediction Using Time-Varying Filtered Empirical Modal Decomposition and Improved Adaptive Sparrow Search Algorithm-Optimized Phase Space Reconstruction–Echo State Network," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    5. Jingtao Huang & Gang Niu & Haiping Guan & Shuzhong Song, 2023. "Ultra-Short-Term Wind Power Prediction Based on LSTM with Loss Shrinkage Adam," Energies, MDPI, vol. 16(9), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13042-:d:939749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.