Environmentally Friendly Concrete Compressive Strength Prediction Using Hybrid Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016.
"An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
- Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi-Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Working Papers 2016-004, Department of Research, Ipag Business School.
- Aman Kumar & Harish Chandra Arora & Nishant Raj Kapoor & Mazin Abed Mohammed & Krishna Kumar & Arnab Majumdar & Orawit Thinnukool, 2022. "Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
- Mosbeh R. Kaloop & Bishwajit Roy & Kuldeep Chaurasia & Sean-Mi Kim & Hee-Myung Jang & Jong-Wan Hu & Basem S. Abdelwahed, 2022. "Shear Strength Estimation of Reinforced Concrete Deep Beams Using a Novel Hybrid Metaheuristic Optimized SVR Models," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhidan Luo & Wei Guo & Qingfu Liu & Yiuman Tse, 2023. "A hybrid prediction model with time‐varying gain tracking differentiator in Taylor expansion: Evidence from precious metals," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1138-1149, August.
- Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.
- Bangzhu Zhu & Jingyi Zhang & Chunzhuo Wan & Julien Chevallier & Ping Wang, 2023. "An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 741-755, July.
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Huang, Zhehao & Dong, Hao & Jia, Shuaishuai, 2022. "Equilibrium pricing for carbon emission in response to the target of carbon emission peaking," Energy Economics, Elsevier, vol. 112(C).
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Bangzhu Zhu & Shujiao Ma & Rui Xie & Julien Chevallier & Yi-Ming Wei, 2018.
"Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market,"
Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 105-121, June.
- Bangzhu Zhu & Shujiao Ma & Rui Xie & Julien Chevallier & Yi-Ming Wei, 2018. "Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market," Post-Print halshs-04250160, HAL.
- Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
- Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
- Nishant Raj Kapoor & Ashok Kumar & Anuj Kumar & Dilovan Asaad Zebari & Krishna Kumar & Mazin Abed Mohammed & Alaa S. Al-Waisy & Marwan Ali Albahar, 2022. "Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN," IJERPH, MDPI, vol. 19(24), pages 1-27, December.
- Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
- Hamed Safayenikoo & Fatemeh Nejati & Moncef L. Nehdi, 2022. "Indirect Analysis of Concrete Slump Using Different Metaheuristic-Empowered Neural Processors," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
- He Jiang, 2023. "Forecasting global solar radiation using a robust regularization approach with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1989-2010, December.
- Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019.
"Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach,"
Applied Energy, Elsevier, vol. 233, pages 196-207.
- Bangzhu Zhu & Shunxin Ye & Minxing Jiang & Ping Wang & Zhanchi Wu & Rui Xie & Julien Chevallier & Yi-Ming Wei, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Post-Print halshs-04250189, HAL.
- Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
- Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Feng, Ling & Wang, Jieyu, 2023. "Random sources correlations and carbon futures pricing," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
More about this item
Keywords
machine learning; green concrete; python; catboost regressor; extra trees regressor; gradient boosting regressor; geopolymer concrete;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:12990-:d:939009. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.