IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i1p551-d717953.html
   My bibliography  Save this article

Models of Sustainable Software: A Scoping Review

Author

Listed:
  • Jakub Swacha

    (Department of IT in Management, University of Szczecin, 71-004 Szczecin, Poland)

Abstract

Information and Communication Technologies (ICTs) play a double role in the strife for sustainable development goals, as both an enabler of green solutions and a cause of excessive consumption. While the primary focus of sustainability-related research is on the hardware aspect of ICT, its software aspect also deserves attention. In order for the notion of green and sustainable software to become widespread among practitioners, models are needed, both to be used as a reference on how to develop sustainable software, and to check whether given software or its development process is sustainable. In this paper, we present the results of a scoping review of literature on sustainable software models, based on 41 works extracted from an initial set of 178 query results from four bibliographic data providers. The relevant literature is mapped using five categories (model scope, purpose, covered sustainability aspects, verification or validation, and the economic category of the country of research), allowing us to identify recent trends and research gaps, which can be addressed in future work.

Suggested Citation

  • Jakub Swacha, 2022. "Models of Sustainable Software: A Scoping Review," Sustainability, MDPI, vol. 14(1), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:1:p:551-:d:717953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samar Hussni Anbarkhan, 2023. "A Fuzzy-TOPSIS-Based Approach to Assessing Sustainability in Software Engineering: An Industry 5.0 Perspective," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    2. Gopalakrishnan Sriraman & Shriram Raghunathan, 2023. "A Systems Thinking Approach to Improve Sustainability in Software Engineering—A Grounded Capability Maturity Framework," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    3. Igor Kotenko & Konstantin Izrailov & Mikhail Buinevich & Igor Saenko & Rajeev Shorey, 2023. "Modeling the Development of Energy Network Software, Taking into Account the Detection and Elimination of Vulnerabilities," Energies, MDPI, vol. 16(13), pages 1-40, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    2. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    3. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Chwiłkowska-Kubala, Anna & Cyfert, Szymon & Malewska, Kamila & Mierzejewska, Katarzyna & Szumowski, Witold, 2023. "The impact of resources on digital transformation in energy sector companies. The role of readiness for digital transformation," Technology in Society, Elsevier, vol. 74(C).
    5. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    6. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    7. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    8. Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
    9. Leslie Quitzow & Friederike Rohde, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," Urban Studies, Urban Studies Journal Limited, vol. 59(2), pages 341-359, February.
    10. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    11. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    12. Huang, Chenchen & Lin, Boqiang, 2024. "Digital economy solutions towards carbon neutrality: The critical role of energy efficiency and energy structure transformation," Energy, Elsevier, vol. 306(C).
    13. Bacha, Radia & Gasmi, Farid, 2022. "The broadband diffusion process and its determinants in Algeria: A simultaneous estimation," TSE Working Papers 22-1309, Toulouse School of Economics (TSE).
    14. Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    15. Quitzow, Leslie & Rohde, Friederike, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 59(2), pages 341-359.
    16. Jiayang Kong & Mark Goh & Yu Cao, 2024. "Can Digital Economy Development Facilitate Corporate ESG Performance?," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    17. Peng, Hua-Rong & Qin, Xiong-Feng, 2024. "Digitalization as a trigger for a rebound effect of electricity use," Energy, Elsevier, vol. 300(C).
    18. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    19. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    20. Nafeesa Javed & Muhammad Javaid Iqbal & Sohail Masood & Laiba Rehman & Saba Ramzan, 2024. "The Effect of Climate Change on Energy Consumption Using Smart Meter Dataset," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(1), pages 777-783.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:1:p:551-:d:717953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.