IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12904-d937675.html
   My bibliography  Save this article

Assessment of Sand and Glass Industry in Saudi Arabia

Author

Listed:
  • Essam R. I. Mahmoud

    (Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 41411, Saudi Arabia)

  • Awaluddin Mohamed Shaharoun

    (Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 41411, Saudi Arabia)

  • Abdulrahman Aljabri

    (Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 41411, Saudi Arabia)

  • Hamad Almohamadi

    (Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 41411, Saudi Arabia)

  • Mohammed Farhan

    (Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 41411, Saudi Arabia
    School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia)

Abstract

Although the economic value of glass products and its importance to the Saudi National Economy is vast, not much information is available about the current state of the art of the industry. Likewise, little information is available about geography, potential sites for mining sand and the sand quality. This paper attempts to bridge this gap by presenting a feasibility study of fabricating normal glass and glass ceramics from Saudi Arabia’s domestically available raw materials. It discusses the current status of the glass industry in Saudi Arabia and the Middle East region. It also gives a brief explanation about the sand topography in Saudi Arabia. In order to determine the feasibility of fabricating glass using these raw materials, experimental data on the fabrication of normal glass and glass ceramics from indigenously available raw materials was obtained and reported as part of the findings of this paper. Firstly, normal transparent glass was able to be fabricated without any apparent large defects using sand collected from the Ar Rayis region in Saudi Arabia. Four nano-sized crystallization catalysts, namely VC, WC, TiC and Y 2 O 3 , were added to the constituents of the glass in 3 wt.%. For VC, the crystallization process was limited. The glass ceramics of WC consisted of multi-dimensional edges crystals which covered all the matrix. Gray crystalline whiskers were obtained by addition of TiC. The Y 2 O 3 - glass ceramics consisted of multi-directionally rosette crystals. Finally, the microhardness values of the added crystallization catalysts glass ceramics were obtained and found to be much higher compared to normal glass. The results show that glass of high quality can be produced specifically for the Ar Rayis region which would be of interest to researchers, the glass industry personnel and potential investors.

Suggested Citation

  • Essam R. I. Mahmoud & Awaluddin Mohamed Shaharoun & Abdulrahman Aljabri & Hamad Almohamadi & Mohammed Farhan, 2022. "Assessment of Sand and Glass Industry in Saudi Arabia," Sustainability, MDPI, vol. 14(19), pages 1-11, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12904-:d:937675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12904/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trieb, Franz & Schillings, Christoph & Pregger, Thomas & O'Sullivan, Marlene, 2012. "Solar electricity imports from the Middle East and North Africa to Europe," Energy Policy, Elsevier, vol. 42(C), pages 341-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavičević, Matija & De Felice, Matteo & Busch, Sebastian & Hidalgo González, Ignacio & Quoilin, Sylvain, 2021. "Water-energy nexus in African power pools – The Dispa-SET Africa model," Energy, Elsevier, vol. 228(C).
    2. Backhaus, Klaus & Gausling, Philipp & Hildebrand, Luise, 2015. "Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec," Energy, Elsevier, vol. 82(C), pages 905-913.
    3. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    4. Hess, Denis & Wetzel, Manuel & Cao, Karl-Kiên, 2018. "Representing node-internal transmission and distribution grids in energy system models," Renewable Energy, Elsevier, vol. 119(C), pages 874-890.
    5. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
    6. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    7. Labordena, Mercè & Patt, Anthony & Bazilian, Morgan & Howells, Mark & Lilliestam, Johan, 2017. "Impact of political and economic barriers for concentrating solar power in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 102(C), pages 52-72.
    8. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    9. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    10. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    11. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    12. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    13. Grossmann, Wolf D. & Grossmann, Iris & Steininger, Karl W., 2014. "Solar electricity generation across large geographic areas, Part II: A Pan-American energy system based on solar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 983-993.
    14. Langarita, Raquel & Duarte, Rosa & Hewings, Geoffrey & Sánchez-Chóliz, Julio, 2019. "Testing European goals for the Spanish electricity system using a disaggregated CGE model," Energy, Elsevier, vol. 179(C), pages 1288-1301.
    15. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    16. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," World Development, Elsevier, vol. 130(C).
    17. Pickard, William F., 2013. "The limits of HVDC transmission," Energy Policy, Elsevier, vol. 61(C), pages 292-300.
    18. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    19. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    20. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12904-:d:937675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.