IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12731-d935110.html
   My bibliography  Save this article

Research on the Cooperation Model of New Energy Vehicle Supply Chain under the Background of Government Subsidies Declining

Author

Listed:
  • Xiaobo Han

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yin Han

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Rong Ke

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Jinghua Zhao

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

This paper studies the impact of the decrease in government subsidies on the selection of the cooperation model of vehicle manufacturers’ in the new energy vehicle supply chain, and uses the mathematical modeling method to establish MA (cooperation between vehicle manufacturers and battery suppliers with better battery life), MB (cooperation between vehicle manufacturers and battery suppliers with similar battery life) MAB (vehicle manufacturer cooperates with both) and N (does not cooperate with both) four cooperation models. The results show that vehicle manufacturers and battery suppliers A and B have cooperation motives, but whether vehicle manufacturers prefer to cooperate with battery supplier A or battery supplier B is related to the decrease in subsidies. In addition, it studies the impact of the decrease in subsidies on the sales price, market demand and supply chain profit of new energy vehicles.

Suggested Citation

  • Xiaobo Han & Yin Han & Rong Ke & Jinghua Zhao, 2022. "Research on the Cooperation Model of New Energy Vehicle Supply Chain under the Background of Government Subsidies Declining," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12731-:d:935110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oikawa, Koki & Managi, Shunsuke, 2015. "R&D in clean technology: A project choice model with learning," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 175-195.
    2. Ahn, Joon Mo & Lee, Weonvin & Mortara, Letizia, 2020. "Do government R&D subsidies stimulate collaboration initiatives in private firms?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziqing He & Qin Liu, 2023. "The Crossover Cooperation Mode and Mechanism of Green Innovation between Manufacturing and Internet Enterprises in Digital Economy," Sustainability, MDPI, vol. 15(5), pages 1-28, February.
    2. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katris, Antonios & Turner, Karen, 2021. "Can different approaches to funding household energy efficiency deliver on economic and social policy objectives? ECO and alternatives in the UK," Energy Policy, Elsevier, vol. 155(C).
    2. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    3. Marullo, Cristina & Ahn, Joon Mo, 2024. "Knowledge tensions and decision-making challenges in open innovation: Standardization as a de-biasing mechanism," Technovation, Elsevier, vol. 136(C).
    4. Xiaofeng Xu & Xiangyu Chen & Yi Xu & Tao Wang & Yifan Zhang, 2022. "Improving the Innovative Performance of Renewable Energy Enterprises in China: Effects of Subsidy Policy and Intellectual Property Legislation," Sustainability, MDPI, vol. 14(13), pages 1-24, July.
    5. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Cui, Li & Chan, Hing Kai & Zhou, Yizhuo & Dai, Jing & Lim, Jia Jia, 2019. "Exploring critical factors of green business failure based on Grey-Decision Making Trial and Evaluation Laboratory (DEMATEL)," Journal of Business Research, Elsevier, vol. 98(C), pages 450-461.
    7. Duan, Yu & Xi, Bin & Xu, Xin & Xuan, Siyuan, 2024. "The impact of government subsidies on green innovation performance in new energy enterprises: A digital transformation perspective," International Review of Economics & Finance, Elsevier, vol. 94(C).
    8. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    9. Rui Guo & Lutao Ning & Kaihua Chen, 2022. "How do human capital and R&D structure facilitate FDI knowledge spillovers to local firm innovation? a panel threshold approach," The Journal of Technology Transfer, Springer, vol. 47(6), pages 1921-1947, December.
    10. Antonella Biscione & Annunziata de Felice & Teodoro Gallucci, 2022. "Energy Saving in Transition Economies: Environmental Activities in Manufacturing Firms," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    11. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    12. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    13. Koji Kotani & Makoto Kakinaka, 2017. "Some implications of environmental regulation on social welfare under learning-by-doing of eco-products," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(1), pages 121-149, January.
    14. Sakamoto, Tomoyuki & Managi, Shunsuke, 2017. "New evidence of environmental efficiency on the export performance," Applied Energy, Elsevier, vol. 185(P1), pages 615-626.
    15. Christian Haas & Karol Kempa, 2023. "Low-Carbon Investment and Credit Rationing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(1), pages 109-145, October.
    16. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    17. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    18. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
    19. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    20. de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12731-:d:935110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.