Harnessing Residual Biomass as a Renewable Energy Source in Colombia: A Potential Gasification Scenario
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gonzalez-Salazar, Miguel Angel & Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro & Finkenrath, Matthias & Poganietz, Witold-Roger, 2014. "Methodology for estimating biomass energy potential and its application to Colombia," Applied Energy, Elsevier, vol. 136(C), pages 781-796.
- Ferreira, L.R.A. & Otto, R.B. & Silva, F.P. & De Souza, S.N.M. & De Souza, S.S. & Ando Junior, O.H., 2018. "Review of the energy potential of the residual biomass for the distributed generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 440-455.
- Albashabsheh, Nibal T. & Heier Stamm, Jessica L., 2019. "Optimization of lignocellulosic biomass-to-biofuel supply chains with mobile pelleting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 545-562.
- Toklu, E., 2017. "Biomass energy potential and utilization in Turkey," Renewable Energy, Elsevier, vol. 107(C), pages 235-244.
- AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
- Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
- Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
- Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
- Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
- Liu, Li & Jiang, Peng & Qian, Hongliang & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2022. "CO2-negative biomass conversion: An economic route with co-production of green hydrogen and highly porous carbon," Applied Energy, Elsevier, vol. 311(C).
- Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
- Durval Maluf Filho & Suani Teixeira Coelho & Danilo Perecin, 2022. "Opportunities and Challenges of Gasification of Municipal Solid Waste (MSW) in Brazil," Energies, MDPI, vol. 15(8), pages 1-13, April.
- Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
- Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
- Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
- Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
- Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Noushabadi, Abolfazl Sajadi & Dashti, Amir & Ahmadijokani, Farhad & Hu, Jinguang & Mohammadi, Amir H., 2021. "Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation," Renewable Energy, Elsevier, vol. 179(C), pages 550-562.
- Sharafi laleh, Shayan & Fatemi Alavi, Seyed Hamed & Soltani, Saeed & Mahmoudi, S.M.S. & Rosen, Marc A., 2024. "A novel supercritical carbon dioxide combined cycle fueled by biomass: Thermodynamic assessment," Renewable Energy, Elsevier, vol. 222(C).
- Sheng Zhong & Shuwen Niu & Yipeng Wang, 2018. "Research on Potential Evaluation and Sustainable Development of Rural Biomass Energy in Gansu Province of China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
- Dennis Krüger & Özge Çepelioğullar Mutlu, 2021. "Demonstration of a Top-Lit Updraft Based Pyrolytic Burner with Low Emission Operation and Automatic Process Control," Energies, MDPI, vol. 14(13), pages 1-16, June.
More about this item
Keywords
biomass; potential; renewable energy; gasification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12537-:d:931442. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.