IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12459-d930108.html
   My bibliography  Save this article

Engineering Properties of High-Volume Fly Ash Modified Cement Incorporated with Bottle Glass Waste Nanoparticles

Author

Listed:
  • Yousef R. Alharbi

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Aref A. Abadel

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Eco-friendly sustainable construction materials with low carbon dioxide emissions and low energy consumption which utilize agricultural and industrial waste are widely recommended. Utilizing high-volume fly ash waste (FA) as a cement replacement will contribute to a reduction in the environmental problems related to cement production and landfill disposal. It is well known that the inclusion of high amounts of FA (up to 50%) as a cement replacement leads to low strength performance, especially at a concrete’s early age (below 7 days). In this study, a cement mortar with high-volume FA (60%) was developed with strength enhancement. With nanotechnology and nanomaterial benefits, nanoparticles from bottle glass waste (BGWNP) were produced and used to replace 2, 4, 6, 8, and 10% of cement–FA binder. The results showed that the compressive strength significantly improved with the inclusion of the BGWNP in a high-volume FA matrix and the strength trend increased from 21.3 to 328 MPa with increasing nanoparticle content from 0 to 6%. However, the results indicated that the inclusion of nanoparticles up to 6% led to a slight reduction in strength value. Similar trends were observed for other engineering and microstructure properties and the matrix containing 6% of BGWNP achieved the highest performance compared to that of the control sample. It is concluded that, with the utilization of BGWNP, there is an ability to produce high-volume FA-based cement with acceptable engineering properties as well as achieve sustainability goals by reducing pollution, recycling waste, and resolving landfill issues.

Suggested Citation

  • Yousef R. Alharbi & Aref A. Abadel, 2022. "Engineering Properties of High-Volume Fly Ash Modified Cement Incorporated with Bottle Glass Waste Nanoparticles," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12459-:d:930108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Blessen Skariah, 2018. "Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3913-3923.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon Asrat Endale & Woubishet Zewdu Taffese & Duy-Hai Vo & Mitiku Damtie Yehualaw, 2022. "Rice Husk Ash in Concrete," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    2. Miljan Kovačević & Marijana Hadzima-Nyarko & Ivanka Netinger Grubeša & Dorin Radu & Silva Lozančić, 2023. "Application of Artificial Intelligence Methods for Predicting the Compressive Strength of Green Concretes with Rice Husk Ash," Mathematics, MDPI, vol. 12(1), pages 1-25, December.
    3. Bergen, Sophia L. & Zemberekci, Lyn & Nair, Sriramya Duddukuri, 2022. "A review of conventional and alternative cementitious materials for geothermal wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.
    5. Rafiandy Dwi Putra & Hossein Beidaghy Dizaji & Dripti Kulshresth & Thomas Zeng & Steffen Overmann & Anya Vollpracht, 2024. "Characterisation of Bottom Ashes from Non-Woody Biomass Combustion for Application as Sustainable Supplementary Cementitious Material," Energies, MDPI, vol. 17(2), pages 1-19, January.
    6. Turhan Bilir & Beyza Fahriye Aygun & Jinyan Shi & Osman Gencel & Togay Ozbakkaloglu, 2022. "Influence of Different Types of Wastes on Mechanical and Durability Properties of Interlocking Concrete Block Paving (ICBP): A Review," Sustainability, MDPI, vol. 14(7), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12459-:d:930108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.