IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10674-d899040.html
   My bibliography  Save this article

Receding-Horizon Prediction of Vehicle Velocity Profile Using Deterministic and Stochastic Deep Neural Network Models

Author

Listed:
  • Jakov Topić

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Branimir Škugor

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

  • Joško Deur

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia)

Abstract

The paper firstly proposes a deterministic deep feedforward neural network model aimed at predicting the city bus velocity profile over receding time horizon based on the following inputs: actual vehicle position, actual velocity or short-term history of vehicle velocities, time of day and day of week. A systematic analysis of the influence of different input subsets, history interval length and prediction horizon length is carried out to find an optimal configuration of NN model inputs and hyperparameters. Secondly, a stochastic version of neural network prediction model is proposed, which predicts expectations and standard deviations of velocity patterns over the receding time horizon. The stochastic model prediction accuracy is verified against the recorded test dataset features, as well as by comparing the predicted velocity expectation with the deterministic model prediction and correlating the predicted velocity standard deviation with deterministic model prediction uncertainty metrics. The verification results indicate that: (i) the deterministic model velocity prediction accuracy is characterized by the R 2 score greater than 0.8 for the prediction horizon length of 10 s and remains to be solid (greater than 0.6) for the horizon lengths up to 25 s; (ii) the actual vehicle position and the velocity history are the most significant input features, where the optimal value of history interval length lies in the range from 30 to 50 s; (iii) the stochastic model have only slightly lower accuracy of predicting the velocity expectation along the receding horizon when compared to the deterministic model (the root mean square error is higher by 2.2%), and it outputs consistent standard deviation prediction.

Suggested Citation

  • Jakov Topić & Branimir Škugor & Joško Deur, 2022. "Receding-Horizon Prediction of Vehicle Velocity Profile Using Deterministic and Stochastic Deep Neural Network Models," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10674-:d:899040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.H.R. van Duin & L.A. Tavasszy & H.J. Quak, 2013. "Towards E(lectric)- urban freight: first promising steps in the electric vehicle revolution," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-9.
    2. Jakov Topić & Branimir Škugor & Joško Deur, 2021. "Synthesis and Feature Selection-Supported Validation of Multidimensional Driving Cycles," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Ma & Penghui Li & Xing Guo & Hongxue Zhao & Yong Chen, 2023. "A Novel Online Prediction Method for Vehicle Velocity and Road Gradient Based on a Flexible-Structure Auto-Regressive Integrated Moving Average Model," Sustainability, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    2. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    3. Leise Kelli de Oliveira & Carla de Oliveira Leite Nascimento & Paulo Renato de Sousa & Paulo Tarso Vilela de Resende & Francisco Gildemir Ferreira da Silva, 2019. "Transport Service Provider Perception of Barriers and Urban Freight Policies in Brazil," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    4. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    5. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
    6. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    8. Jose L. Arroyo & Ángel Felipe & M. Teresa Ortuño & Gregorio Tirado, 2020. "Effectiveness of carbon pricing policies for promoting urban freight electrification: analysis of last mile delivery in Madrid," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1417-1440, December.
    9. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    10. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    11. Stanisław Iwan & Mariusz Nürnberg & Artur Bejger & Kinga Kijewska & Krzysztof Małecki, 2021. "Unloading Bays as Charging Stations for EFV-Based Urban Freight Delivery System—Example of Szczecin," Energies, MDPI, vol. 14(18), pages 1-22, September.
    12. Lemardelé, Clément & Estrada, Miquel & Pagès, Laia & Bachofner, Mónika, 2021. "Potentialities of drones and ground autonomous delivery devices for last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    13. Daniel Newman & Peter Wells & Ceri Donovan & Paul Nieuwenhuis & Huw Davies, 2014. "Urban, sub-urban or rural: where is the best place for electric vehicles?," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 306-323.
    14. Winkelmann, Jonas & Spinler, Stefan & Neukirchen, Thomas, 2024. "Green transport fleet renewal using approximate dynamic programming: A case study in German heavy-duty road transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    15. Jarosław Wątróbski & Krzysztof Małecki & Kinga Kijewska & Stanisław Iwan & Artur Karczmarczyk & Russell G. Thompson, 2017. "Multi-Criteria Analysis of Electric Vans for City Logistics," Sustainability, MDPI, vol. 9(8), pages 1-34, August.
    16. Xiao, Yiyong & Zhang, Yue & Kaku, Ikou & Kang, Rui & Pan, Xing, 2021. "Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    18. Luigi Ranieri & Salvatore Digiesi & Bartolomeo Silvestri & Michele Roccotelli, 2018. "A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    19. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10674-:d:899040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.