IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10311-d892172.html
   My bibliography  Save this article

Effects of Ecological Water Conveyance on Soil Salinization in the Shiyang River Basin’s Terminal Lake—Qingtu Lake—Area

Author

Listed:
  • Jianxia Yang

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Jun Zhao

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Guofeng Zhu

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Yuanyuan Wen

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Yanqiang Wang

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Jialiang Liu

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

  • Zhihui Yang

    (College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China)

Abstract

(1) Background: Recently, secondary soil salinization has frequently occurred in ecological water conveyance and irrigation areas. Therefore, monitoring the information on soil salinization in the conveyance irrigation area and analyzing the change process of soil salinization are of great significance to both environmental improvement and salinization management. (2) Methods: This study takes the Shiyang River’s terminal lake—Qingtu Lake—and its surroundings as the research area. The salinization index was extracted by remote sensing data and methods, and a comprehensive salinization model ( CSI ) was established. Firstly, the spatial distribution regular of soil salinization, since ecological water conveyance was explored, and the change trends in soil salinization were analyzed. Secondly, the relationship between the change characteristics of soil salinization and groundwater, water area changes and land use types were analyzed. (3) Results: The Kappa coefficient between the soil salinization extracted by CSI and the measured data reached 0.703, and CSI can accurately monitor soil salinization information. From 2011 to 2020, the non-salinized land increased by 2.1%, mild and moderate salinization decreased by 5.7% and 3.9%, respectively, and severe salinization increased by 7.5%. The salinization in the lake area showed a decreasing trend, and the periphery of the lake area showed an increasing trend. Groundwater, water area changes and land use type have certain influences on soil salinization in the study area. (4) Conclusion: Since ecological water conveyance, the total proportion of soil salinized area in Qingtu Lake and its surrounding areas has not changed much, but there are certain changes between different grades of salinized land. The areas with changes to the level of salinization are mainly shallow, unstable water areas, saline–alkali land, wetlands and sandy land, and there are secondary salinization problems in these areas.

Suggested Citation

  • Jianxia Yang & Jun Zhao & Guofeng Zhu & Yuanyuan Wen & Yanqiang Wang & Jialiang Liu & Zhihui Yang, 2022. "Effects of Ecological Water Conveyance on Soil Salinization in the Shiyang River Basin’s Terminal Lake—Qingtu Lake—Area," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10311-:d:892172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jumeniyaz Seydehmet & Guang-Hui Lv & Abdugheni Abliz, 2019. "Landscape Design as a Tool to Reduce Soil Salinization: The Study Case of Keriya Oasis (NW China)," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    2. Ke, Zengming & Liu, Xiaoli & Ma, Lihui & Feng, Zhe & Tu, Wen & Dong, Qin’ge & Jiao, Feng & Wang, Zhanli, 2021. "Rainstorm events increase risk of soil salinization in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Bingnan & Feng, Yu & Lin, Ji & Wang, Xu, 2024. "New energy demonstration city and urban pollutant emissions: An analysis based on a spatial difference-in-differences model," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    2. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Zengming Ke & Xiaoli Liu & Lihui Ma & Feng Jiao & Zhanli Wang, 2023. "Spatial Distribution of Soil Water and Salt in a Slightly Salinized Farmland," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    5. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    6. José Rato-Nunes & José Telo-da-Gama & David Peña & Luís Loures & Angel Albaran & Damian Fernández-Rodríguez & Luis Vicente & António López-Piñeiro, 2024. "Hedgerow Olive Orchards versus Traditional Olive Orchards: Impact on Selected Soil Chemical Properties," Agriculture, MDPI, vol. 14(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10311-:d:892172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.