IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10277-d891796.html
   My bibliography  Save this article

Evaluation of Interaction between Bridge Infrastructure Resilience Factors against Seismic Hazard

Author

Listed:
  • Ángel Francisco Galaviz Román

    (Industrial Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada)

  • Md Saiful Arif Khan

    (Industrial Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada)

  • Golam Kabir

    (Industrial Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada)

  • Muntasir Billah

    (Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Subhrajit Dutta

    (Civil Engineering Department, National Institute of Technology (NIT) Silchar, Assam 781017, India)

Abstract

Infrastructure systems, such as bridges, are perpetually vulnerable to natural hazards such as seismic events, flooding, and landslides. This study aims to determine the relevant parameters required to increase the seismic resilience of bridge infrastructure based on the decisions of experts and prior research. To this end, the crisp DEMATEL (decision-making and trial evaluation laboratory) and rough DEMATEL methods are employed. Rough DEMATEL is a supplement to crisp DEMATEL that incorporates rough theory to handle ambiguity. The efficacies of the rough and crisp DEMATEL methods are then compared between the two approaches. This study found the most crucial seismic-resilience variables for bridges. The outcomes of this study reveal the significant order and cause-and-effect relationships. This research can assist transportation engineers and executive agencies in enhancing the seismic resilience of roadway bridges and bridge networks.

Suggested Citation

  • Ángel Francisco Galaviz Román & Md Saiful Arif Khan & Golam Kabir & Muntasir Billah & Subhrajit Dutta, 2022. "Evaluation of Interaction between Bridge Infrastructure Resilience Factors against Seismic Hazard," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10277-:d:891796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Leon F. Gay & Sunil K. Sinha, 2013. "Resilience of civil infrastructure systems: literature review for improved asset management," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 9(4), pages 330-350.
    3. Wu, Hsin-Hung & Chang, Shih-Yu, 2015. "A case study of using DEMATEL method to identify critical factors in green supply chain management," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 394-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomoya Uenaga & Pedram Omidian & Riya Catherine George & Mohsen Mirzajani & Naser Khaji, 2023. "Seismic Resilience Assessment of Curved Reinforced Concrete Bridge Piers through Seismic Fragility Curves Considering Short- and Long-Period Earthquakes," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    2. Francesco Morgan Bono & Luca Radicioni & Simone Cinquemani & Lorenzo Benedetti & Gabriele Cazzulani & Claudio Somaschini & Marco Belloli, 2023. "A Deep Learning Approach to Detect Failures in Bridges Based on the Coherence of Signals," Future Internet, MDPI, vol. 15(4), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Maryam Garshasbi & Golam Kabir, 2022. "Earthquake Resilience Framework for a Stormwater Pipe Infrastructure System Integrating the Best Worst Method and Dempster–Shafer Theory," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    3. Matthew Callcut & Jean-Paul Cerceau Agliozzo & Liz Varga & Lauren McMillan, 2021. "Digital Twins in Civil Infrastructure Systems," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    7. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Seles, Bruno Michel Roman Pais & de Sousa Jabbour, Ana Beatriz Lopes & Jabbour, Charbel José Chiappetta & Dangelico, Rosa Maria, 2016. "The green bullwhip effect, the diffusion of green supply chain practices, and institutional pressures: Evidence from the automotive sector," International Journal of Production Economics, Elsevier, vol. 182(C), pages 342-355.
    10. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Johansson, Bengt & Jonsson, Daniel K. & Veibäck, Ester & Sonnsjö, Hannes, 2016. "Assessing the capabilites to manage risks in energy systems–analytical perspectives and frameworks with a starting point in Swedish experiences," Energy, Elsevier, vol. 116(P1), pages 429-435.
    12. Nebojša Brkljač & Milan Delić & Marko Orošnjak & Nenad Medić & Slavko Rakić & Ljiljana Popović, 2024. "Interdependent Influences of Reverse Logistics Implementation Barriers in the Conditions of an Emerging Economy," Mathematics, MDPI, vol. 12(16), pages 1-19, August.
    13. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    14. Song, Yanwu & Dong, Ying, 2024. "Influence of resource compensation and complete information on green sustainability of semiconductor supply chains," International Journal of Production Economics, Elsevier, vol. 271(C).
    15. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    16. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    17. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Hamed Nozari & Esmaeil Najafi & Mohammad Fallah & Farhad Hosseinzadeh Lotfi, 2019. "Quantitative Analysis of Key Performance Indicators of Green Supply Chain in FMCG Industries Using Non-Linear Fuzzy Method," Mathematics, MDPI, vol. 7(11), pages 1-19, October.
    19. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Han, Lin & Zhao, Xudong & Chen, Zhilong & Gong, Huadong & Hou, Benwei, 2021. "Assessing resilience of urban lifeline networks to intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10277-:d:891796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.