IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9749-d882890.html
   My bibliography  Save this article

Identification and Classification of the Dissolved Substances from Sludge Biochar and Their Effects on the Activity of Acid Phosphomonoesterase

Author

Listed:
  • Junyuan Zhang

    (Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Yang Liu

    (Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Bowen Li

    (Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Chunling Tan

    (Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Dandan Zhou

    (Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Martina G. Vijver

    (Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands)

  • Willie J. G. M. Peijnenburg

    (Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands
    National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands)

Abstract

Soil extra-cellular enzymes are the main driving force for microbial and biochemical processes, which makes them sensitive indicators for soil health and quality. Returning large amounts of sludge or its biochar to farmland may introduce exogenous substances into soil and have a significant impact on soil enzymatic activity. This study aimed to evaluate the effects of substances dissolved from sludge biomass and its biochar added at different amounts and produced at various temperatures (200 °C, 300 °C, and 450 °C) on the activity of acid phosphomonoesterase. Results showed that the activity of acid phosphomonoesterase was significantly inhibited by these dissolved substances from biochar pyrolyzed at different temperatures, especially at high concentrations of 50 mgC L −1 and upon the exposure to DBC200. The conformation of acid phosphomonoesterase became loose and flexible after exposure to dissolved organic matter (DOM) extracted from biochar in terms of reduced α-Helix contents and increased β-Turn contents as deduced from circular dichroism spectra. According to the results of multiple linear regression, it can be concluded that the increased contents of arsenic as well as protein-like components within dissolved substances may be responsible for the inhibited enzymatic activities and the altered enzymatic conformation. Our findings provide evidence that the pyrolysis of sludge at a higher temperature would be helpful to reduce its negative impacts on the soil ecosystem.

Suggested Citation

  • Junyuan Zhang & Yang Liu & Bowen Li & Chunling Tan & Dandan Zhou & Martina G. Vijver & Willie J. G. M. Peijnenburg, 2022. "Identification and Classification of the Dissolved Substances from Sludge Biochar and Their Effects on the Activity of Acid Phosphomonoesterase," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9749-:d:882890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lai, Fa-ying & Chang, Yan-chao & Huang, Hua-jun & Wu, Guo-qiang & Xiong, Jiang-bo & Pan, Zi-qian & Zhou, Chun-fei, 2018. "Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products," Energy, Elsevier, vol. 148(C), pages 629-641.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Mariusz Wądrzyk & Łukasz Korzeniowski & Marek Plata & Rafał Janus & Marek Lewandowski & Grzegorz Borówka & Przemysław Maziarka, 2023. "Solvothermal Liquefaction of Blackcurrant Pomace in the Water-Monohydroxy Alcohol Solvent System," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    4. Zhao, Bojun & Li, Haoyang & Wang, Haoyu & Hu, Yulin & Gao, Jihui & Zhao, Guangbo & Ray, Madhumita B. & Xu, Chunbao Charles, 2021. "Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass," Renewable Energy, Elsevier, vol. 176(C), pages 543-554.
    5. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    6. Haijun Wu & Usama Shakeel & Quan Zhang & Kai Zhang & Xia Xu & Jian Xu, 2022. "Ethanol-Assisted Hydrothermal Liquefaction of Poplar Using Fe-Co/Al 2 O 3 as Catalyst," Energies, MDPI, vol. 15(9), pages 1-16, April.
    7. Chen, Xinfei & Ma, Xiaoqian & Zeng, Xianghao & Zheng, Chupeng & Lu, Xiaoluan, 2020. "Ethanol addition during aqueous phase recirculation for further improving bio-oil yield and quality," Applied Energy, Elsevier, vol. 262(C).
    8. Yan, Mi & Liu, Yu & Wen, Xiaoqiang & Yang, Yayong & Cui, Jintao & Chen, Feng & Hantoko, Dwi, 2023. "Effect of operating conditions on hydrothermal liquefaction of kitchen waste with ethanol-water as a co-solvent for bio-oil production," Renewable Energy, Elsevier, vol. 215(C).
    9. Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
    10. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    11. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Huang, Hua-jun & Chang, Yan-chao & Lai, Fa-ying & Zhou, Chun-fei & Pan, Zi-qian & Xiao, Xiao-feng & Wang, Jia-xin & Zhou, Chun-huo, 2019. "Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products," Energy, Elsevier, vol. 173(C), pages 140-150.
    13. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9749-:d:882890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.