IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9616-d880604.html
   My bibliography  Save this article

Experimental Study on the Shear Mechanical Properties of Anchor Cable with C-Shaped Tube

Author

Listed:
  • Renliang Shan

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Weijun Liu

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Gengzhao Li

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Chen Liang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Shuguo Shi

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Ye Chen

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Shupeng Zhang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China)

Abstract

Faced with serious tensile–shear fracturing of anchor bolts and cables in deep roadways, it is of great significance to investigate Anchor Cable with C-shaped tube (ACC), a combined structure of a C-shaped tube and an anchor cable with high strength and shear resistance. The shear mechanical properties of the anchor cable and ACC are systematically investigated using the technical means of theoretical analysis and double-shear tests. The improved equipment for a double-shear test not only considers the initial normal stress but also ensures the continuity of the anchor cable’s axial force transmission while considering the influence of the inclination angle on the shear performance of supporting components. The research indicates that the C-shaped tube inhibits the occurrence of stress concentration near the joint surface and improves the stress state of the anchor cable, transforming its failure mode from tensile–shear failure to tensile failure. Compared with the anchor cable, ACC has a higher shear capacity, greater shear stiffness and better ductility in the shear direction. The shear capacity of ACC is higher when it is perpendicular to the joint plane than when inclined to 80°, and the shear capacity of the joint plane is linear with the initial normal stress. Two methods were proposed to contrast the shear capacity between the anchor cable and ACC, including the shear capacity of supporting components and the shear capacity of the joint surface. The former is to evaluate the shear capability of the anchor cable and ACC, while the latter is to evaluate the ability of the anchor cable and ACC to control the shear deformation of the joint surface. The tests results show that the average shear capacity of ACC is 279 kN higher than the anchor cable, with an average increase of 34.9%. The average shear capacity of the joint surface anchored by ACC is 306 kN higher than the anchor cable, with an average increase of 25.2%. ACC can effectively improve the shear capacity of the anchor cable in the free section and has wide application prospects.

Suggested Citation

  • Renliang Shan & Weijun Liu & Gengzhao Li & Chen Liang & Shuguo Shi & Ye Chen & Shupeng Zhang, 2022. "Experimental Study on the Shear Mechanical Properties of Anchor Cable with C-Shaped Tube," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9616-:d:880604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xingdong Zhao & Huaibin Li & Shujing Zhang & Xiaoming Yang, 2019. "Stability Analyses and Cable Bolt Support Design for A Deep Large-Span Stope at the Hongtoushan Mine, China," Sustainability, MDPI, vol. 11(21), pages 1-23, November.
    2. Dongdong Qin & Xufeng Wang & Dongsheng Zhang & Xuyang Chen, 2019. "Study on Surrounding Rock-Bearing Structure and Associated Control Mechanism of Deep Soft Rock Roadway Under Dynamic Pressure," Sustainability, MDPI, vol. 11(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoguang Qiao & Runxun Zhang & Lulu Zhang & Xinghua Zhang & Xiaogang Zhang, 2023. "Study on the Parameters of Strengthening Soft Surrounding Rock by Electric Pulse Grouting in the Mining Face," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Wu & Qian Jia & Weijun Wang & Nong Zhang & Yiming Zhao, 2021. "Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal Mine," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    2. Peng Wang & Nong Zhang & Jiaguang Kan & Bin Wang & Xingliang Xu, 2021. "Stabilization of Rock Roadway under Obliquely Straddle Working Face," Energies, MDPI, vol. 14(18), pages 1-23, September.
    3. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    4. Zhaowen Du & Shaojie Chen & Junbiao Ma & Zhongping Guo & Dawei Yin, 2020. "Gob-Side Entry Retaining Involving Bag Filling Material for Support Wall Construction," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    5. Qingxian Huang & Xufeng Wang & Xuyang Chen & Dongdong Qin & Zechao Chang, 2020. "Evolution of Interior and Exterior Bearing Structures of the Deep-Soft-Rock Roadway: From Theory to Field Test in the Pingdingshan Mining Area," Energies, MDPI, vol. 13(17), pages 1-19, August.
    6. Yuxi Hao & Mingliang Li & Wen Wang & Zhizeng Zhang & Zhun Li, 2023. "Study on the Stress Distribution and Stability Control of Surrounding Rock of Reserved Roadway with Hard Roof," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    7. Dongdong Chen & Zhiqiang Wang & Zaisheng Jiang & Shengrong Xie & Zijian Li & Qiucheng Ye & Jingkun Zhu, 2023. "Research on J 2 Evolution Law and Control under the Condition of Internal Pressure Relief in Surrounding Rock of Deep Roadway," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    8. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9616-:d:880604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.