IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5759-d634434.html
   My bibliography  Save this article

Stabilization of Rock Roadway under Obliquely Straddle Working Face

Author

Listed:
  • Peng Wang

    (Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Nong Zhang

    (Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Jiaguang Kan

    (Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Bin Wang

    (Admissions and employment Division, Wenzhou University, Wenzhou 325035, China)

  • Xingliang Xu

    (Key Laboratory of Deep Coal Resource Mining of the Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

A floor rock roadway under an oblique straddle working face is a typical dynamic pressure roadway. Under the complex disturbance of excavation engineering works, the roadway often undergoes stress concentration and severe deformation and damage. To solve the problem of surrounding rock stability control for this roadway type, this study considered the East Forth main transport roadway in the floor strata of the 1762(3) working face of the Pansan coal mine. In situ ground pressure monitoring and numerical simulation calculation using the FLAC2D software were carried out. The influence laws of the surrounding rock lithology, the vertical and horizontal distance between the roadway and overlying working face, the positional relationship between the roadway and the overlying working face, and the support form and strength of the rock surrounding an oblique straddle roadway were obtained. Within the range of mining influence, the properties of the rock surrounding the roof and floor were very different, and the deformation of the rock surrounding the two sides exhibited regional difference. The influence range of the mining working face on the rock floor of the roadway was approximately 30–40 m, and that of horizontal mining was approximately 50–60 m. The mining influence on the rock surrounding the side roadway of the working face is large, but the mining influence on the roadway below is small. Using FLAC2D, the stress and displacement characteristics of the rock surrounding the obliquely straddle roadway were compared and analyzed when the bolt support, combined bolt and shed support, and bolt–shotcreting–grouting support were adopted, the proposed support scheme of bolting and shotcreting was successfully applied. The deformation of the rock surrounding the roadway was satisfactorily controlled, and the results were useful as a reference for similar roadway maintenance projects.

Suggested Citation

  • Peng Wang & Nong Zhang & Jiaguang Kan & Bin Wang & Xingliang Xu, 2021. "Stabilization of Rock Roadway under Obliquely Straddle Working Face," Energies, MDPI, vol. 14(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5759-:d:634434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongdong Qin & Xufeng Wang & Dongsheng Zhang & Xuyang Chen, 2019. "Study on Surrounding Rock-Bearing Structure and Associated Control Mechanism of Deep Soft Rock Roadway Under Dynamic Pressure," Sustainability, MDPI, vol. 11(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowei Guo & Xigui Zheng & Peng Li & Rui Lian & Cancan Liu & Niaz Muhammad Shahani & Cong Wang & Boyang Li & Wenjie Xu & Guowei Lai, 2021. "Full-Stress Anchoring Technology and Application of Bolts in the Coal Roadway," Energies, MDPI, vol. 14(22), pages 1-24, November.
    2. Aoran Li & Guangzhen Cui & Peng Wang & Xinjie Wang & Zhengtao Hong & Jiangrong Kong & Jiaguang Kan, 2023. "Deformation and Failure Laws of Surrounding Rocks of Coal Roadways under High Dynamic Load and Intelligent Prediction," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    3. Krzysztof Skrzypkowski & Krzysztof Zagórski & Anna Zagórska & Derek B. Apel & Jun Wang & Huawei Xu & Lijie Guo, 2022. "Choice of the Arch Yielding Support for the Preparatory Roadway Located near the Fault," Energies, MDPI, vol. 15(10), pages 1-21, May.
    4. Chun Zhu & Jiabing Zhang & Junlong Shang & Dazhong Ren & Manchao He, 2023. "Advances in Multifield and Multiscale Coupling of Rock Engineering," Energies, MDPI, vol. 16(10), pages 1-6, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Wu & Qian Jia & Weijun Wang & Nong Zhang & Yiming Zhao, 2021. "Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal Mine," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    2. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    3. Qingxian Huang & Xufeng Wang & Xuyang Chen & Dongdong Qin & Zechao Chang, 2020. "Evolution of Interior and Exterior Bearing Structures of the Deep-Soft-Rock Roadway: From Theory to Field Test in the Pingdingshan Mining Area," Energies, MDPI, vol. 13(17), pages 1-19, August.
    4. Yuxi Hao & Mingliang Li & Wen Wang & Zhizeng Zhang & Zhun Li, 2023. "Study on the Stress Distribution and Stability Control of Surrounding Rock of Reserved Roadway with Hard Roof," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    5. Dongdong Chen & Zhiqiang Wang & Zaisheng Jiang & Shengrong Xie & Zijian Li & Qiucheng Ye & Jingkun Zhu, 2023. "Research on J 2 Evolution Law and Control under the Condition of Internal Pressure Relief in Surrounding Rock of Deep Roadway," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    6. Renliang Shan & Weijun Liu & Gengzhao Li & Chen Liang & Shuguo Shi & Ye Chen & Shupeng Zhang, 2022. "Experimental Study on the Shear Mechanical Properties of Anchor Cable with C-Shaped Tube," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    7. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5759-:d:634434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.