IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9397-d877521.html
   My bibliography  Save this article

Overview on Recent Developments in the Design, Application, and Impacts of Nanofertilizers in Agriculture

Author

Listed:
  • Zahra Zahra

    (Department of Civil and Environmental Engineering, University of California-Irvine, Irvine, CA 92697, USA)

  • Zunaira Habib

    (Department of Chemistry, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
    Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Hyeseung Hyun

    (College of Environmental Design, University of California, Berkeley, 230, Wurster Hall, Berkeley, CA 94720, USA)

  • Hafiz Muhammad Aamir Shahzad

    (Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan)

Abstract

Nutrient management is always a great concern for better crop production. The optimized use of nutrients plays a key role in sustainable crop production, which is a major global challenge as it depends mainly on synthetic fertilizers. A novel fertilizer approach is required that can boost agricultural system production while being more ecologically friendly than synthetic fertilizers. As nanotechnology has left no field untouched, including agriculture, by its scientific innovations. The use of nanofertilizers in agriculture is in the early stage of development, but they appear to have significant potential in different ways, such as increased nutrient-use efficiency, the slow release of nutrients to prevent nutrient loss, targeted delivery, improved abiotic stress tolerance, etc. This review summarizes the current knowledge on various developments in the design and formulation of nanoparticles used as nanofertilizers, their types, their mode of application, and their potential impacts on agricultural crops. The main emphasis is given on the potential benefits of nanofertilizers, and we highlight the current limitations and future challenges related to the wide-scale application before field applications. In particular, the unprecedent release of these nanomaterials into the environment may jeopardize human health and the ecosystem. As the green revolution has occurred, the production of food grains has increased at the cost of the disproportionate use of synthetic fertilizers and pesticides, which have severely damaged our ecosystem. We need to make sure that the use of these nanofertilizers reduces environmental damage, rather than increasing it. Therefore, future studies should also check the environmental risks associated with these nanofertilizers, if there are any; moreover, it should focus on green manufactured and biosynthesized nanofertilizers, as well as their safety, bioavailability, and toxicity issues, to safeguard their application for sustainable agriculture environments.

Suggested Citation

  • Zahra Zahra & Zunaira Habib & Hyeseung Hyun & Hafiz Muhammad Aamir Shahzad, 2022. "Overview on Recent Developments in the Design, Application, and Impacts of Nanofertilizers in Agriculture," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9397-:d:877521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sophie Coffey & Victor Timmers & Rui Li & Guanglu Wu & Agustí Egea-Àlvarez, 2021. "Review of MVDC Applications, Technologies, and Future Prospects," Energies, MDPI, vol. 14(24), pages 1-36, December.
    2. Daniele Roppolo & Bert De Rybel & Valérie Dénervaud Tendon & Alexandre Pfister & Julien Alassimone & Joop E. M. Vermeer & Misako Yamazaki & York-Dieter Stierhof & Tom Beeckman & Niko Geldner, 2011. "A novel protein family mediates Casparian strip formation in the endodermis," Nature, Nature, vol. 473(7347), pages 380-383, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Martínez García & Silvia Ramos Cabral & Ricardo Pérez Zúñiga & Luis Carlos G. Martínez Rodríguez, 2023. "Automatic Equipment to Increase Sustainability in Agricultural Fertilization," Agriculture, MDPI, vol. 13(2), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils Langenberg & Simon Kimpeler & Albert Moser, 2022. "Interconnecting Power-Electronic Buck Converter Modules in a Novel High-Power Test Bench for MVDC Circuit Breakers," Energies, MDPI, vol. 15(21), pages 1-22, October.
    2. Inês Catarina Ramos Barbosa & Damien De Bellis & Isabelle Flückiger & Etienne Bellani & Mathieu Grangé-Guerment & Kian Hématy & Niko Geldner, 2023. "Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. d'Amore-Domenech, Rafael & Meca, Vladimir L. & Pollet, Bruno G. & Leo, Teresa J., 2023. "On the bulk transport of green hydrogen at sea: Comparison between submarine pipeline and compressed and liquefied transport by ship," Energy, Elsevier, vol. 267(C).
    4. Damien De Bellis & Lothar Kalmbach & Peter Marhavy & Jean Daraspe & Niko Geldner & Marie Barberon, 2022. "Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Yanyan Wang & Yibo Cao & Xiaoyan Liang & Junhong Zhuang & Xiangfeng Wang & Feng Qin & Caifu Jiang, 2022. "A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9397-:d:877521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.