IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8877-d867064.html
   My bibliography  Save this article

Deep Model-Based Security-Aware Entity Alignment Method for Edge-Specific Knowledge Graphs

Author

Listed:
  • Jongmo Kim

    (Department of Industrial Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Kunyoung Kim

    (Department of Industrial Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Mye Sohn

    (Department of Industrial Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Gyudong Park

    (2nd R&D Institute, Agency for Defense Development, Seoul 05771, Korea)

Abstract

This paper proposes a deep model-based entity alignment method for the edge-specific knowledge graphs (KGs) to resolve the semantic heterogeneity between the edge systems’ data. To do so, this paper first analyzes the edge-specific knowledge graphs (KGs) to find unique characteristics. The deep model-based entity alignment method is developed based on their unique characteristics. The proposed method performs the entity alignment using a graph which is not topological but data-centric, to reflect the characteristics of the edge-specific KGs, which are mainly composed of the instance entities rather than the conceptual entities. In addition, two deep models, namely BERT (bidirectional encoder representations from transformers) for the concept entities and GAN (generative adversarial networks) for the instance entities, are applied to model learning. By utilizing the deep models, neural network models that humans cannot interpret, it is possible to secure data on the edge systems. The two learning models trained separately are integrated using a graph-based deep learning model GCN (graph convolution network). Finally, the integrated deep model is utilized to align the entities in the edge-specific KGs. To demonstrate the superiority of the proposed method, we perform the experiment and evaluation compared to the state-of-the-art entity alignment methods with the two experimental datasets from DBpedia, YAGO, and wikidata. In the evaluation metrics of Hits@k, mean rank (MR), and mean reciprocal rank (MRR), the proposed method shows the best predictive and generalization performance for the KG entity alignment.

Suggested Citation

  • Jongmo Kim & Kunyoung Kim & Mye Sohn & Gyudong Park, 2022. "Deep Model-Based Security-Aware Entity Alignment Method for Edge-Specific Knowledge Graphs," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8877-:d:867064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chenchen Yao & Chuangang Zhao, 2022. "Knowledge Graph and GNN-Based News Recommendation Algorithm With Edge Computing Support," International Journal of Distributed Systems and Technologies (IJDST), IGI Global, vol. 13(2), pages 1-11, April.
    2. Qi Zhang & Yuanqiao Wen & Chunhui Zhou & Hai Long & Dong Han & Fan Zhang & Changshi Xiao, 2019. "Construction of Knowledge Graphs for Maritime Dangerous Goods," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junho Choi, 2022. "Graph Embedding-Based Domain-Specific Knowledge Graph Expansion Using Research Literature Summary," Sustainability, MDPI, vol. 14(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    2. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    3. Jiyuan Tan & Qianqian Qiu & Weiwei Guo & Tingshuai Li, 2021. "Research on the Construction of a Knowledge Graph and Knowledge Reasoning Model in the Field of Urban Traffic," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    4. Yukun Jiang & Xin Gao & Wenxin Su & Jinrong Li, 2021. "Systematic Knowledge Management of Construction Safety Standards Based on Knowledge Graphs: A Case Study in China," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    5. Wenling Liu & Yuexiang Yang & Xinyu Tu & Wan Wang, 2022. "ERSDMM: A Standard Digitalization Modeling Method for Emergency Response Based on Knowledge Graph," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    6. Qi He & Chenyang Yu & Wei Song & Xiaoyi Jiang & Lili Song & Jian Wang, 2023. "ISLKG: The Construction of Island Knowledge Graph and Knowledge Reasoning," Sustainability, MDPI, vol. 15(17), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8877-:d:867064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.