IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8173-d855682.html
   My bibliography  Save this article

Research on the Division Method of Signal Control Sub-Region Based on Macroscopic Fundamental Diagram

Author

Listed:
  • Xianglun Mo

    (Department of Transportation, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaohong Jin

    (Department of Transportation, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Jinpeng Tian

    (Department of Transportation, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhushuai Shao

    (Department of Transportation, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Gangqing Han

    (Department of Transportation, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The macroscopic fundamental diagram (MFD) provides a method to evaluate macro traffic operation through micro traffic parameters, which can be applied to traffic control to prevent traffic congestion transfer and improve road network efficiency. However, due to the large scale of the urban road network as well as the complex temporal and spatial distribution of road congestion, the application of the MFD for signal control first requires the partition of the urban road network. Based on the analysis of MFD partition purposes, a set of MFD partition methods based on graph theory was designed. Firstly, graph theory was used to transform the urban road network; secondly, the minimum spanning tree method was used to divide the urban traffic network map. Moreover, the attribution of the link between connected regions is determined. Our method can solve the problem of ambiguous intersection ownership, and the road sections belonging to the same road in opposite directions are separated. This method has the ability to control the size of the area by limiting the number of intersections; Finally, the evaluation index of regional clustering results was drawn. To achieve the research objective, we collected and processed vehicle information data from the Xuzhou car-hailing platform to obtain traffic density information. Then, we selected an area with sufficient data and a large enough road network. The empirical value range of the regional control value was obtained by comparing the values of multiple groups of measurement data k and evaluation indexes. In this process, it was found that during the period of flat peak and peak transition, while the regional average traffic density changes, the uniformity of traffic density first decreases and then increases. The traffic density uniformity of the signal control area can be improved by controlling the size of the signal control area. We obtained the empirical value range of the regional control value k by comparing the values of multiple groups of measurement data k and evaluation indexes. Then, we compared them with the two kinds of traditional partition algorithms and improved multiple dichotomy algorithms. Our method improves road network balance by 5% over existing methods.

Suggested Citation

  • Xianglun Mo & Xiaohong Jin & Jinpeng Tian & Zhushuai Shao & Gangqing Han, 2022. "Research on the Division Method of Signal Control Sub-Region Based on Macroscopic Fundamental Diagram," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8173-:d:855682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    2. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    5. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    6. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    7. Xiaohui Lin, 2019. "A Road Network Traffic State Identification Method Based on Macroscopic Fundamental Diagram and Spectral Clustering and Support Vector Machine," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, April.
    8. Gao, Xueyu (Shirley) & Gayah, Vikash V., 2018. "An analytical framework to model uncertainty in urban network dynamics using Macroscopic Fundamental Diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 660-675.
    9. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    10. Geroliminis, Nikolas & Boyacı, Burak, 2012. "The effect of variability of urban systems characteristics in the network capacity," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1607-1623.
    11. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    12. Haddad, Jack & Geroliminis, Nikolas, 2012. "On the stability of traffic perimeter control in two-region urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1159-1176.
    13. Geroliminis, Nikolas & Sun, Jie, 2011. "Properties of a well-defined macroscopic fundamental diagram for urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 605-617, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    2. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    3. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    4. Zhong, R.X. & Huang, Y.P. & Chen, C. & Lam, W.H.K. & Xu, D.B. & Sumalee, A., 2018. "Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 327-355.
    5. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    6. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    7. Ma, Wenfei & Huang, Yunping & Jin, Xiao & Zhong, Renxin, 2024. "Functional form selection and calibration of macroscopic fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    8. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    9. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    10. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    11. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    12. Haddad, Jack, 2017. "Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 1-25.
    13. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    14. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    15. Anupriya, & Bansal, Prateek & Graham, Daniel J., 2023. "Congestion in cities: Can road capacity expansions provide a solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    16. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    17. Haddad, Jack & Shraiber, Arie, 2014. "Robust perimeter control design for an urban region," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 315-332.
    18. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    19. Gao, Xueyu (Shirley) & Gayah, Vikash V., 2018. "An analytical framework to model uncertainty in urban network dynamics using Macroscopic Fundamental Diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 660-675.
    20. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8173-:d:855682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.