IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8021-d852881.html
   My bibliography  Save this article

Identifying Challenges and Drivers for Deployment of Centralized Biogas Plants in Denmark

Author

Listed:
  • Mark Booker Nielsen

    (Institute of People and Technology (IMT), Roskilde University (RUC), Universitetsvej 1, 4000 Roskilde, Denmark)

Abstract

There is an increasing need to accelerate the diffusion of biogas technology, to contribute to handling grand societal challenges. It is thus concerning that around 30% of all biogas projects are abandoned. Previous studies have found that challenges for deployment of bioenergy technology are mainly economic and financial challenges, market and infrastructure challenges, regulatory and administrative challenges, local opposition, site selection challenges and ecological aspects. Very few studies have however tried to understand how these different types of challenges specifically affect individual biogas projects. Also, no previous studies have identified where these challenges occur in the different phases of a project’s lifecycle (conceptualization, planning, and execution). A lack of understanding that limits the ability of both public institutions and project owners to ensure the success of biogas projects. The aim of this study is to fill this knowledge gap and provide a unique insight into the often very complex and long project lifecycle for the realization of centralized biogas projects. Results based on five comprehensive longitudinal case studies of attempts to realize centralized biogas projects, all taking place between 2008–2020 in Denmark, provide insight into how projects are specially affected by these different types of challenges, and shows that both successful and abandoned projects typically faced an array of challenges that project owners need to overcome. The study also from a bottom-up perspective provides insight into the implementation of national policies and initiatives assigned to the accelerated deployment of biogas technology in Denmark between 2008–2020 as well as critical factors at the local level driving the development.

Suggested Citation

  • Mark Booker Nielsen, 2022. "Identifying Challenges and Drivers for Deployment of Centralized Biogas Plants in Denmark," Sustainability, MDPI, vol. 14(13), pages 1-28, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8021-:d:852881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Britz, Wolfgang & Delzeit, Ruth, 2013. "The impact of German biogas production on European and global agricultural markets, land use and the environment," Energy Policy, Elsevier, vol. 62(C), pages 1268-1275.
    2. Raven, R.P.J.M. & Gregersen, K.H., 2007. "Biogas plants in Denmark: successes and setbacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 116-132, January.
    3. Kortsch, Timo & Hildebrand, Jan & Schweizer-Ries, Petra, 2015. "Acceptance of biomass plants – Results of a longitudinal study in the bioenergy-region Altmark," Renewable Energy, Elsevier, vol. 83(C), pages 690-697.
    4. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    5. Poole, Marshall Scott & Van de Ven, Andrew H. & Dooley, Kevin & Holmes, Michael E., 2000. "Organizational Change and Innovation Processes: Theory and Methods for Research," OUP Catalogue, Oxford University Press, number 9780195131987.
    6. Upreti, Bishnu Raj, 2004. "Conflict over biomass energy development in the United Kingdom: some observations and lessons from England and Wales," Energy Policy, Elsevier, vol. 32(6), pages 785-800, April.
    7. Soland, Martin & Steimer, Nora & Walter, Götz, 2013. "Local acceptance of existing biogas plants in Switzerland," Energy Policy, Elsevier, vol. 61(C), pages 802-810.
    8. Dobers, Geesche M., 2019. "Acceptance of biogas plants taking into account space and place," Energy Policy, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Dyreborg Martin, 2023. "Co-Development of a Tool to Aid the Assessment of Biomass Potential for Sustainable Resource Utilization: An Exploratory Study with Danish and Swedish Municipalities," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Mark Booker Nielsen & Rikke Lybæk & Tyge Kjær, 2022. "Successfully Navigating the Project Lifecycle for Deployment of Centralized Biogas Projects—The Case of Solrød Biogas," Energies, MDPI, vol. 15(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Booker Nielsen & Rikke Lybæk & Tyge Kjær, 2022. "Successfully Navigating the Project Lifecycle for Deployment of Centralized Biogas Projects—The Case of Solrød Biogas," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. Mathilde van Dijk & Annet-Jantien Smit & Jan-Peter Nap, 2023. "Message Framing and Attitudes Toward Green Gas Facilities in Rural Communities of The Netherlands," SAGE Open, , vol. 13(3), pages 21582440231, September.
    3. Krekel, Christian & Rechlitz, Julia & Rode, Johannes & Zerrahn, Alexander, 2020. "Quantifying the Externalities of Renewable Energy Plants Using Wellbeing Data: The Case of Biogas," IZA Discussion Papers 13959, Institute of Labor Economics (IZA).
    4. Lisiak-Zielińska, Marta & Jałoszyńska, Sylwia & Borowiak, Klaudia & Budka, Anna & Dach, Jacek, 2023. "Perception of biogas plants: A public awareness and preference - A case study for the agricultural landscape," Renewable Energy, Elsevier, vol. 217(C).
    5. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    6. Stanislav Martinát & Justyna Chodkowska-Miszczuk & Marián Kulla & Josef Navrátil & Petr Klusáček & Petr Dvořák & Ladislav Novotný & Tomáš Krejčí & Loránt Pregi & Jakub Trojan & Bohumil Frantál, 2022. "Best Practice Forever? Dynamics behind the Perception of Farm-Fed Anaerobic Digestion Plants in Rural Peripheries," Energies, MDPI, vol. 15(7), pages 1-17, March.
    7. Massimiliano Mazzanti & Marco Modica & Andrea Rampa, 2021. "The Biogas dilemma: an analysis on the Social Approval of large new plants," SEEDS Working Papers 0221, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    8. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    10. Muhammad Aslam Mohd Safari & Nurulkamal Masseran & Alias Jedi & Sohif Mat & Kamaruzzaman Sopian & Azman Bin Abdul Rahim & Azami Zaharim, 2020. "Rural Public Acceptance of Wind and Solar Energy: A Case Study from Mersing, Malaysia," Energies, MDPI, vol. 13(15), pages 1-24, July.
    11. Zemo, Kahsay Haile & Panduro, Toke Emil & Termansen, Mette, 2019. "Impact of biogas plants on rural residential property values and implications for local acceptance," Energy Policy, Elsevier, vol. 129(C), pages 1121-1131.
    12. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    13. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    14. Dobers, Geesche M., 2019. "Acceptance of biogas plants taking into account space and place," Energy Policy, Elsevier, vol. 135(C).
    15. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    16. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Tamer Khraisha & Keren Arthur, 2018. "Can we have a general theory of financial innovation processes? A conceptual review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-27, December.
    18. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    19. Dinica, Valentina, 2009. "Biomass power: Exploring the diffusion challenges in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1551-1559, August.
    20. Jeffery S. McMullen & Dimo Dimov, 2013. "Time and the Entrepreneurial Journey: The Problems and Promise of Studying Entrepreneurship as a Process," Journal of Management Studies, Wiley Blackwell, vol. 50(8), pages 1481-1512, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8021-:d:852881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.