IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7964-d852015.html
   My bibliography  Save this article

Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery

Author

Listed:
  • Wangda Liao

    (School of Economics, Hunan Agricultural University, Changsha 410128, China)

  • Fusheng Zeng

    (School of Economics, Hunan Agricultural University, Changsha 410128, China)

  • Meseret Chanieabate

    (Research Institute of Rural Revitalization, Hunan University of Science and Engineering, Yongzhou 425199, China)

Abstract

Developing countries with small-scale agriculture have yet to exploit the untapped potential of agricultural mechanization. This is because of the misconception that mechanization is often seen as unworthy in small-scale agriculture. The purpose of this paper is to examine the development of agricultural mechanization in China and to provide evidence on how smallholder farmers can access agricultural machinery. A narrative approach was employed to conduct an in-depth analysis of the policies, strategies, and trends associated with agricultural mechanization development. The findings showed that: (1) the establishment and development of mechanization for smallholder agriculture is an evolutionary process that strongly opposes leapfrogging (technocratic behavior) and making large jumps; (2) the foundation of mechanization development should rely on a self-reliance system; (3) an appropriate mechanization theory is the key to inducing the rapid growth of mechanization in small-scale agriculture; (4) the successful application of agricultural machinery requires strong, target-oriented, and pro-farmer policies with effective leadership strategies. We present the key lessons on policy and institutional aspects for countries with small-scale agriculture and who are in the initial stages of agricultural mechanization.

Suggested Citation

  • Wangda Liao & Fusheng Zeng & Meseret Chanieabate, 2022. "Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7964-:d:852015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiaobing & Yamauchi, Futoshi & Huang, Jikun & Rozelle, Scott, 2020. "What constrains mechanization in Chinese agriculture? Role of farm size and fragmentation," China Economic Review, Elsevier, vol. 62(C).
    2. Zhang, Xiaobo & Yang, Jin & Wang, Shenglin, 2011. "China has reached the Lewis turning point," China Economic Review, Elsevier, vol. 22(4), pages 542-554.
    3. Qiao, Fangbin, 2017. "Increasing wage, mechanization, and agriculture production in China," China Economic Review, Elsevier, vol. 46(C), pages 249-260.
    4. Ashayeri, M. Salar & Khaledian, M.R. & Kavoosi-Kalashami, M. & Rezaei, M., 2018. "The economic value of irrigation water in paddy farms categorized according to mechanization levels in Guilan province, Iran," Agricultural Water Management, Elsevier, vol. 202(C), pages 195-201.
    5. Jin Yang & Zuhui Huang & Xiaobo Zhang & Thomas Reardon, 2013. "The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1245-1251.
    6. Belton, Ben & Win, Myat Thida & Zhang, Xiaobo & Filipski, Mateusz, 2021. "The rapid rise of agricultural mechanization in Myanmar," Food Policy, Elsevier, vol. 101(C).
    7. Aryal, Jeetendra Prakash & Rahut, Dil Bahadur & Thapa, Ganesh & Simtowe, Franklin, 2021. "Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey," Technology in Society, Elsevier, vol. 65(C).
    8. Totin, Edmond & van Mierlo, Barbara & Klerkx, Laurens, 2020. "Scaling practices within agricultural innovation platforms: Between pushing and pulling," Agricultural Systems, Elsevier, vol. 179(C).
    9. Takeshima, Hiroyuki & Liu, Yanyan, 2020. "Smallholder mechanization induced by yield-enhancing biological technologies: Evidence from Nepal and Ghana," Agricultural Systems, Elsevier, vol. 184(C).
    10. Li, Fang & Feng, Shuyi & Lu, Hualiang & Qu, Futian & D’Haese, Marijke, 2021. "How do non-farm employment and agricultural mechanization impact on large-scale farming? A spatial panel data analysis from Jiangsu Province, China," Land Use Policy, Elsevier, vol. 107(C).
    11. Tongwei Qiu & Biliang Luo, 2021. "Do small farms prefer agricultural mechanization services? Evidence from wheat production in China," Applied Economics, Taylor & Francis Journals, vol. 53(26), pages 2962-2973, June.
    12. Nolte, Kerstin & Ostermeier, Martin, 2017. "Labour Market Effects of Large-Scale Agricultural Investment: Conceptual Considerations and Estimated Employment Effects," World Development, Elsevier, vol. 98(C), pages 430-446.
    13. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    14. Zhang, Xiaobo & Yang, Jin & Reardon, Thomas, 2020. "Mechanization outsourcing clusters and division of labor in Chinese agriculture," IFPRI book chapters, in: An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia?, chapter 2, pages 71-96, International Food Policy Research Institute (IFPRI).
    15. Chen, Shuo & Lan, Xiaohuan, 2020. "Tractor vs. animal: Rural reforms and technology adoption in China," Journal of Development Economics, Elsevier, vol. 147(C).
    16. Wang, Xiaobing & Yamauchi, Futoshi & Otsuka, Keijiro & Huang, Jikun, 2016. "Wage Growth, Landholding, and Mechanization in Chinese Agriculture," World Development, Elsevier, vol. 86(C), pages 30-45.
    17. Gao, Jia & Song, Ge & Sun, Xueqing, 2020. "Does labor migration affect rural land transfer? Evidence from China," Land Use Policy, Elsevier, vol. 99(C).
    18. Rogers, Sarah & Wilmsen, Brooke & Han, Xiao & Wang, Zoe Ju-Han & Duan, Yuefang & He, Jun & Li, Jie & Lin, Wanlong & Wong, Christine, 2021. "Scaling up agriculture? The dynamics of land transfer in inland China," World Development, Elsevier, vol. 146(C).
    19. Qiu, Tongwei & Shi, Xinjie & He, Qinying & Luo, Biliang, 2021. "The paradox of developing agricultural mechanization services in China: Supporting or kicking out smallholder farmers?," China Economic Review, Elsevier, vol. 69(C).
    20. Zhang, Yumei & Diao, Xinshen, 2020. "The changing role of agriculture with economic structural change – The case of China," China Economic Review, Elsevier, vol. 62(C).
    21. Felipe, Jesus & Bayudan-Dacuycuy, Connie & Lanzafame, Matteo, 2016. "The declining share of agricultural employment in China: How fast?," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 127-137.
    22. Hilmy, Joseph, 1999. "Communists Among Us in a Market Economy: Accountancy in the People's Republic of China," The International Journal of Accounting, Elsevier, vol. 34(4), pages 491-515, 010.
    23. Nickum, James E., 1979. "The politics of agricultural mechanization in China : Benedict Stavis, (Cornell University Press, Ithaca and London, 1978) pp. 288, $17.50," Journal of Development Economics, Elsevier, vol. 6(2), pages 287-290, April.
    24. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Rural land system reforms in China: History, issues, measures and prospects," Land Use Policy, Elsevier, vol. 91(C).
    25. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Justice, Scott E. & McDonald, Andrew J., 2019. "Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal," Land Use Policy, Elsevier, vol. 85(C), pages 104-113.
    26. Liao, Liuwen & Long, Hualou & Gao, Xiaolu & Ma, Enpu, 2019. "Effects of land use transitions and rural aging on agricultural production in China’s farming area: A perspective from changing labor employing quantity in the planting industry," Land Use Policy, Elsevier, vol. 88(C).
    27. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    28. Bai, Ying & Kung, James Kai-sing, 2014. "The shaping of an institutional choice: Weather shocks, the Great Leap Famine, and agricultural decollectivization in China," Explorations in Economic History, Elsevier, vol. 54(C), pages 1-26.
    29. Van den Berg, M. Marrit & Hengsdijk, Huib & Wolf, Joost & Van Ittersum, Martin K. & Guanghuo, Wang & Roetter, Reimund P., 2007. "The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China," Agricultural Systems, Elsevier, vol. 94(3), pages 841-850, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    2. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    3. Jiquan Peng & Zihao Zhao & Lili Chen, 2022. "The Impact of High-Standard Farmland Construction Policy on Rural Poverty in China," Land, MDPI, vol. 11(9), pages 1-20, September.
    4. Ren, Xiaocong & He, Jun & Huang, Zilong, 2023. "Innovation, natural resources abundance, climate change and green growth in agriculture," Resources Policy, Elsevier, vol. 85(PA).
    5. Linan Zhou & Gengui Zhou & Hangying Li & Jian Cao, 2023. "Channel Selection of Closed-Loop Supply Chain for Scrapped Agricultural Machines Remanufacturing," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    6. Ionuț-Adrian Drăguleasa & Amalia Niță & Mirela Mazilu & Gheorghe Curcan, 2023. "Spatio-Temporal Distribution and Trends of Major Agricultural Crops in Romania Using Interactive Geographic Information System Mapping," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    7. Huaquan Zhang & Zhenyao Yang & Yidan Wang & Martinson Ankrah Twumasi & Abbas Ali Chandio, 2023. "Impact of Agricultural Mechanization Level on Farmers’ Health Status in Western China: Analysis Based on CHARLS Data," IJERPH, MDPI, vol. 20(5), pages 1-20, March.
    8. Yuanfeng Liu & Xinyuan He, 2024. "Unraveling the Institutional Logic in China: an Examination of the Institutional Logic Behind Separation of Ownership, Contract Rights, and Operational Rights," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 13509-13531, September.
    9. Fang, Dan & Chen, Jiangqiang & Wang, Saige & Chen, Bin, 2024. "Can agricultural mechanization enhance the climate resilience of food production? Evidence from China," Applied Energy, Elsevier, vol. 373(C).
    10. Gelton Fernando de Morais & Jenyffer da Silva Gomes Santos & Daniela Han & Luiz Octávio Ramos Filho & Marcelo Gomes Barroca Xavier & Leonardo Schimidt & Hugo Thiago de Souza & Fernanda Ticianelli de C, 2023. "Agricultural Machinery Adequacy for Handling the Mombaça Grass Biomass in Agroforestry Systems," Agriculture, MDPI, vol. 13(7), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    2. Yuanying Chi & Wenbing Zhou & Zhenyu Wang & Yu Hu & Xiao Han, 2021. "The Influence Paths of Agricultural Mechanization on Green Agricultural Development," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    3. Liu, Yan & Heerink, Nico & Li, Fan & Shi, Xiaoping, 2022. "Do agricultural machinery services promote village farmland rental markets? Theory and evidence from a case study in the North China plain," Land Use Policy, Elsevier, vol. 122(C).
    4. Ping Xue & Xinru Han & Yongchun Wang & Xiudong Wang, 2022. "Can Agricultural Machinery Harvesting Services Reduce Cropland Abandonment? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-15, June.
    5. Xi Yu & Xiyang Yin & Yuying Liu & Dongmei Li, 2021. "Do Agricultural Machinery Services Facilitate Land Transfer? Evidence from Rice Farmers in Sichuan Province, China," Land, MDPI, vol. 10(5), pages 1-14, April.
    6. Liu, Xinyue & Wang, Xiaobing & Xu, Zhigang, 2023. "The polarization and constraints of scale farming in China under the impact of rising wages," Journal of Asian Economics, Elsevier, vol. 86(C).
    7. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    8. Zhang, Cheng & Nie, Kunxi & Zhu, Yueji, 2024. "Participation in land rental and labor markets and agricultural economic performance of banana farmers in China," Land Use Policy, Elsevier, vol. 146(C).
    9. Zou, Baoling & Chen, Yudan & Mishra, Ashok K. & Hirsch, Stefan, 2024. "Agricultural mechanization and the performance of the local Chinese economy," Food Policy, Elsevier, vol. 125(C).
    10. Zhou, Xiaoshi & Ma, Wanglin, 2021. "Effects of Agricultural Mechanization on Land Productivity: Evidence from China," 2021 Conference, August 17-31, 2021, Virtual 315143, International Association of Agricultural Economists.
    11. Xiaoshi Zhou & Wanglin Ma & Gucheng Li & Huanguang Qiu, 2020. "Farm machinery use and maize yields in China: an analysis accounting for selection bias and heterogeneity," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1282-1307, October.
    12. Meng Qu & Kai Zhao & Renhui Zhang & Yuan Gao & Jing Wang, 2022. "Divergence between Willingness and Behavior of Farmers to Purchase Socialized Agricultural Services: From a Heterogeneity Perspective of Land Scale," Land, MDPI, vol. 11(8), pages 1-21, July.
    13. Yuan Hu & Ziyang Zhou & Li Zhou & Caiming Liu, 2024. "Self-Owned or Outsourced? The Impact of Farm Machinery Adoption Decisions on Chinese Farm Households’ Operating Income," Agriculture, MDPI, vol. 14(11), pages 1-26, October.
    14. Yuanjie Zhang & Shichao Yuan & Jian Wang & Jian Cheng & Daolin Zhu, 2022. "How Do the Different Types of Land Costs Affect Agricultural Crop-Planting Selections in China?," Land, MDPI, vol. 11(11), pages 1-18, October.
    15. Meili Huan & Shaoguo Zhan, 2022. "Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production," Land, MDPI, vol. 11(11), pages 1-17, October.
    16. Belton, Ben & Win, Myat Thida & Zhang, Xiaobo & Filipski, Mateusz, 2021. "The rapid rise of agricultural mechanization in Myanmar," Food Policy, Elsevier, vol. 101(C).
    17. Li, Linfei & Khan, Sufyan Ullah & Guo, Chenhao & Huang, Yanfen & Xia, Xianli, 2022. "Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China," Land Use Policy, Elsevier, vol. 120(C).
    18. Aryal, Jeetendra Prakash & Rahut, Dil Bahadur & Thapa, Ganesh & Simtowe, Franklin, 2021. "Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey," Technology in Society, Elsevier, vol. 65(C).
    19. Xiang Li & Xiaoqin Guo, 2023. "Can Policy Promote Agricultural Service Outsourcing? Quasi-Natural Experimental Evidence from China," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    20. Idelphonse O. Saliou & Afio Zannou & Augustin K. N. Aoudji & Albert N. Honlonkou, 2020. "Drivers of Mechanization in Cotton Production in Benin, West Africa," Agriculture, MDPI, vol. 10(11), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7964-:d:852015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.