IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6741-d828922.html
   My bibliography  Save this article

Occupational Safety and Health 5.0—A Model for Multilevel Strategic Deployment Aligned with the Sustainable Development Goals of Agenda 2030

Author

Listed:
  • María Jesús Ávila-Gutiérrez

    (Design Engineering Department, Polytechnic School, University of Seville, 41011 Seville, Spain)

  • Susana Suarez-Fernandez de Miranda

    (Design Engineering Department, Polytechnic School, University of Seville, 41011 Seville, Spain)

  • Francisco Aguayo-González

    (Design Engineering Department, Polytechnic School, University of Seville, 41011 Seville, Spain)

Abstract

The concept of Industry 4.0 (I4.0) is evolving towards Industry 5.0 (I5.0), where the human factor is the central axis for the formation of smart cyber-physical socio-technical systems that are integrated into their physical and cultural host environment. This situation generates a new work ecosystem with a radical change in the methods, processes and development scenarios and, therefore, in the occupational risks to which safety science must respond. In this paper, a historical review of the evolution of work as a complex socio-technical system formalised through Vygostky’s theory of Activity and the contributions of safety science is carried out, for its projection in the analysis of the future of complex systems as an opportunity for safety research linked to the current labour context in transformation. Next, the Horizon 2020 strategies for Occupational Safety and Health (OSH) at the European level are analysed to extract the lessons learned and extrapolate them towards the proposed model, and subsequently the conceptual frameworks that are transforming work and Occupational Risk Prevention (ORP) in the transition to Industry 4.0 are identified and reviewed. Finally, a model is formulated that formalises the deployment of public policies and multi-level and multi-scale OSH 5.0 strategies within the framework of the Sustainable Development Goals (SDGs) of the United Nations (UN) for Horizon 2030.

Suggested Citation

  • María Jesús Ávila-Gutiérrez & Susana Suarez-Fernandez de Miranda & Francisco Aguayo-González, 2022. "Occupational Safety and Health 5.0—A Model for Multilevel Strategic Deployment Aligned with the Sustainable Development Goals of Agenda 2030," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6741-:d:828922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    2. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    3. Papazoglou, I.A. & Aneziris, O.N. & Bellamy, L.J. & Ale, B.J.M. & Oh, J., 2017. "Multi-hazard multi-person quantitative occupational risk model and risk management," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 310-326.
    4. Szopik-Depczyńska, Katarzyna & Kędzierska-Szczepaniak, Angelika & Szczepaniak, Krzysztof & Cheba, Katarzyna & Gajda, Waldemar & Ioppolo, Giuseppe, 2018. "Innovation in sustainable development: an investigation of the EU context using 2030 agenda indicators," Land Use Policy, Elsevier, vol. 79(C), pages 251-262.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    2. Ghannouchi, Imen, 2023. "Examining the dynamic nexus between industry 4.0 technologies and sustainable economy: New insights from empirical evidence using GMM estimator across 20 OECD nations," Technology in Society, Elsevier, vol. 75(C).
    3. Marzena Podgórska, 2022. "Challenges and Perspectives in Innovative Projects Focused on Sustainable Industry 4.0—A Case Study on Polish Project Teams," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    4. Andreas Felsberger & Gerald Reiner, 2020. "Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-39, September.
    5. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    6. Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & Anam, Md. Zahidul & Ahmed, Tazim & Ali, Syed Mithun & de Jesus Pacheco, Diego Augusto & Moktadir, Md. Abdul, 2023. "Industry 5.0 challenges for post-pandemic supply chain sustainability in an emerging economy," International Journal of Production Economics, Elsevier, vol. 258(C).
    7. Kolade, Oluwaseun & Owoseni, Adebowale, 2022. "Employment 5.0: The work of the future and the future of work," Technology in Society, Elsevier, vol. 71(C).
    8. Riccardo Brozzi & David Forti & Erwin Rauch & Dominik T. Matt, 2020. "The Advantages of Industry 4.0 Applications for Sustainability: Results from a Sample of Manufacturing Companies," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    9. Urška Kosem & Mirko Markič & Annmarie Gorenc Zoran, 2021. "Automation of Work Processes and Night Work," Data, MDPI, vol. 6(6), pages 1-13, May.
    10. Han, Wang-Zhe & Zhang, Yi-Ming, 2024. "Carbon reduction effect of industrial robots: Breaking the impasse for carbon emissions and development," Innovation and Green Development, Elsevier, vol. 3(3).
    11. Violeta Sima & Ileana Georgiana Gheorghe & Jonel Subić & Dumitru Nancu, 2020. "Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    12. Grybauskas, Andrius & Stefanini, Alessandro & Ghobakhloo, Morteza, 2022. "Social sustainability in the age of digitalization: A systematic literature Review on the social implications of industry 4.0," Technology in Society, Elsevier, vol. 70(C).
    13. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Loebbing, Jonas, 2018. "An Elementary Theory of Endogenous Technical Change and Wage Inequality," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181603, Verein für Socialpolitik / German Economic Association.
    15. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    16. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    17. Iftekhairul Islam & Fahad Shaon, 2020. "If the Prospect of Some Occupations Are Stagnating With Technological Advancement? A Task Attribute Approach to Detect Employment Vulnerability," Papers 2001.02783, arXiv.org.
    18. Ayhan, Fatih & Elal, Onuray, 2023. "The IMPACTS of technological change on employment: Evidence from OECD countries with panel data analysis," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    19. Caroline Lloyd & Jonathan Payne, 2021. "Fewer jobs, better jobs? An international comparative study of robots and ‘routine’ work in the public sector," Industrial Relations Journal, Wiley Blackwell, vol. 52(2), pages 109-124, March.
    20. Grinis, Inna, 2017. "The STEM requirements of "non-STEM" jobs: evidence from UK online vacancy postings and implications for skills & knowledge shortages," LSE Research Online Documents on Economics 85123, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6741-:d:828922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.