IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4926-d544942.html
   My bibliography  Save this article

Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam

Author

Listed:
  • Nguyen Duc Luong

    (Faculty of Environmental Engineering, National University of Civil Engineering (NUCE), 55 Giai Phong, Hanoi 100000, Vietnam)

  • Nguyen Hoang Hiep

    (Graduate Institute of Applied Geology, National Central University, Taoyuan 32000, Taiwan)

  • Thi Hieu Bui

    (Faculty of Environmental Engineering, National University of Civil Engineering (NUCE), 55 Giai Phong, Hanoi 100000, Vietnam)

Abstract

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.

Suggested Citation

  • Nguyen Duc Luong & Nguyen Hoang Hiep & Thi Hieu Bui, 2021. "Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4926-:d:544942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4926/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4926/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molle, Francois & Hoanh, Chu Thai, 2009. "Implementing integrated river basin management: lessons from the Red River Basin, Vietnam," IWMI Research Reports H042337, International Water Management Institute.
    2. Xinxin Guo & Qiang Fu & Yanhong Hang & He Lu & Fengjie Gao & Jingbo Si, 2020. "Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China," Sustainability, MDPI, vol. 12(9), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Suhardiman & Mark Giordano, 2012. "Process-focused analysis in transboundary water governance research," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 12(3), pages 299-308, September.
    2. Muhammad Waseem Rasheed & Jialiang Tang & Abid Sarwar & Suraj Shah & Naeem Saddique & Muhammad Usman Khan & Muhammad Imran Khan & Shah Nawaz & Redmond R. Shamshiri & Marjan Aziz & Muhammad Sultan, 2022. "Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    3. Prabhavathy Settu & Mangayarkarasi Ramaiah, 2024. "Estimation of Sentinel-1 derived soil moisture using modified Dubois model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29677-29693, November.
    4. William Ascher, 2023. "Coping with the ambiguities of poverty-alleviation programs and policies: a policy sciences approach," Policy Sciences, Springer;Society of Policy Sciences, vol. 56(2), pages 325-354, June.
    5. Ohana-Levi, Noa & Mintz, Danielle Ferman & Hagag, Nave & Stern, Yossi & Munitz, Sarel & Friedman-Levi, Yael & Shacham, Nir & Grünzweig, José M. & Netzer, Yishai, 2022. "Grapevine responses to site-specific spatiotemporal factors in a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Siyue Sun & Guolin Zhang & Tieguang He & Shufang Song & Xingbiao Chu, 2021. "Effects of Landscape Positions and Landscape Types on Soil Properties and Chlorophyll Content of Citrus in a Sloping Orchard in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    7. Nguyen, Thi Phuong Loan, 2012. "Legal framework of the water sector in Vietnam: Achievements and Challenges," MPRA Paper 52995, University Library of Munich, Germany.
    8. Benedetta Brunelli & Michaela Giglio & Elisa Magnani & Marco Dubbini, 2024. "Surface soil moisture estimate from Sentinel-1 and Sentinel-2 data in agricultural fields in areas of high vulnerability to climate variations: the Marche region (Italy) case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24083-24105, September.
    9. Theophilus Atio Abalori & Wenxia Cao & Conrad Atogi-Akwoa Weobong & Wen Li & Shilin Wang & Xiuxia Deng, 2022. "Spatial Vegetation Patch Patterns and Their Relation to Environmental Factors in the Alpine Grasslands of the Qilian Mountains," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4926-:d:544942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.