IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4264-d534443.html
   My bibliography  Save this article

Advanced Driver Assistant Systems Focused on Pedestrians’ Safety: A User Experience Approach

Author

Listed:
  • Matúš Šucha

    (Department of Psychology, Faculty of Arts, Palacký University Olomouc, Křížkovského 8, 779 00 Olomouc, Czech Republic)

  • Ralf Risser

    (Department of Psychology, Faculty of Arts, Palacký University Olomouc, Křížkovského 8, 779 00 Olomouc, Czech Republic)

  • Kristýna Honzíčková

    (Department of Psychology, Faculty of Arts, Palacký University Olomouc, Křížkovského 8, 779 00 Olomouc, Czech Republic)

Abstract

Globally, pedestrians represent 23% of all road deaths. Many solutions to protect pedestrians are proposed; in this paper, we focus on technical solutions of the ADAS–Advanced Driver Assistance Systems–type. Concerning the interaction between drivers and pedestrians, we want to have a closer look at two aspects: how to protect pedestrians with the help of vehicle technology, and how pedestrians–but also car drivers–perceive and accept such technology. The aim of the present study was to analyze and describe the experiences, needs, and preferences of pedestrians–and drivers–in connection with ADAS, or in other words, how ADAS should work in such a way that it would protect pedestrians and make walking more relaxed. Moreover, we interviewed experts in the field in order to check if, in the near future, the needs and preferences of pedestrians and drivers can be met by new generations of ADAS. A combination of different methods, specifically, an original questionnaire, on-the-spot interviewing, and expert interviews, was used to collect data. The qualitative data was analyzed using qualitative text analysis (clustering and categorization). The questionnaire for drivers was answered by a total of 70 respondents, while a total of 60 pedestrians agreed to complete questionnaires concerning pedestrian safety. Expert interviews (five interviews) were conducted by means of personal interviews, approximately one hour in duration. We conclude that systems to protect pedestrians–to avoid collisions of cars with pedestrians–are considered useful by all groups, though with somewhat different implications. With respect to the features of such systems, the considerations are very heterogeneous, and experimentation is needed in order to develop optimal systems, but a decisive argument put forward by some of the experts is that autonomous vehicles will have to be programmed extremely defensively. Given this argument, we conclude that we will need more discussion concerning typical interaction situations in order to find solutions that allow traffic to work both smoothly and safely.

Suggested Citation

  • Matúš Šucha & Ralf Risser & Kristýna Honzíčková, 2021. "Advanced Driver Assistant Systems Focused on Pedestrians’ Safety: A User Experience Approach," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4264-:d:534443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sujanie Peiris & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2020. "Road Trauma in Regional and Remote Australia and New Zealand in Preparedness for ADAS Technologies and Autonomous Vehicles," Sustainability, MDPI, vol. 12(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujanie Peiris & Janneke Berecki-Gisolf & Stuart Newstead & Bernard Chen & Brian Fildes, 2021. "Development of a Methodology for Estimating the Availability of ADAS-Dependent Road Infrastructure," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    2. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    3. Qian Cheng & Xiaobei Jiang & Haodong Zhang & Wuhong Wang & Chunwen Sun, 2020. "Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    4. Sujanie Peiris & Stuart Newstead & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2022. "Quantifying the Lost Safety Benefits of ADAS Technologies Due to Inadequate Supporting Road Infrastructure," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    5. Jaeheon Choi & Kyuil Lee & Hyunmyung Kim & Sunghi An & Daisik Nam, 2020. "Classification of Inter-Urban Highway Drivers’ Resting Behavior for Advanced Driver-Assistance System Technologies using Vehicle Trajectory Data from Car Navigation Systems," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    6. Bruce Corben & Sujanie Peiris & Suryaprakash Mishra, 2022. "The Importance of Adopting a Safe System Approach—Translation of Principles into Practical Solutions," Sustainability, MDPI, vol. 14(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4264-:d:534443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.