IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9512-d620707.html
   My bibliography  Save this article

Development of a Methodology for Estimating the Availability of ADAS-Dependent Road Infrastructure

Author

Listed:
  • Sujanie Peiris

    (Accident Research Centre, Monash University, 21 Alliance Ln, Clayton, VIC 3800, Australia)

  • Janneke Berecki-Gisolf

    (Accident Research Centre, Monash University, 21 Alliance Ln, Clayton, VIC 3800, Australia)

  • Stuart Newstead

    (Accident Research Centre, Monash University, 21 Alliance Ln, Clayton, VIC 3800, Australia)

  • Bernard Chen

    (Department of Mechanical and Aerospace Engineering, Monash University, 17 College Walk, Clayton, VIC 3800, Australia)

  • Brian Fildes

    (Accident Research Centre, Monash University, 21 Alliance Ln, Clayton, VIC 3800, Australia)

Abstract

Advanced driver assist systems are being promoted with the expectation that enhanced driver support will mitigate road trauma. While these technologies are optimised for certain road and traffic conditions, not all roads across Australasia are equipped with ADAS-supportive infrastructure. This study developed a desk-top methodology for using road classes (disaggregated by remoteness levels) to estimate the presence of quality roads, road delineation and speed signage in Victoria, Australia. Aerial imagery and mapping data were used to assess a number of random locations based on a developed protocol. The methodology demonstrated that in Victoria, major and arterial roads across all remoteness levels had high-quality sealed surfaces but 42% of all remote roads were unsealed. Delineation (crucial for lane support systems) were absent across 73% of sub-arterial roads independent of remoteness, and absent across 96% of sub-arterial roads in regional and remote areas. Speed sign availability across remote and regional areas was sparse, with only 65% of all roads assessed having signage. Results are reflective of Victoria’s road funding model and consistent with on-road audits conducted by other researchers. This methodology enables the proportion ADAS-ready roads to be estimated so the benefits of ADAS technologies can be quantified and investments into ADAS-supportive infrastructure be readily allocated.

Suggested Citation

  • Sujanie Peiris & Janneke Berecki-Gisolf & Stuart Newstead & Bernard Chen & Brian Fildes, 2021. "Development of a Methodology for Estimating the Availability of ADAS-Dependent Road Infrastructure," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9512-:d:620707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sujanie Peiris & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2020. "Road Trauma in Regional and Remote Australia and New Zealand in Preparedness for ADAS Technologies and Autonomous Vehicles," Sustainability, MDPI, vol. 12(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sujanie Peiris & Stuart Newstead & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2022. "Quantifying the Lost Safety Benefits of ADAS Technologies Due to Inadequate Supporting Road Infrastructure," Sustainability, MDPI, vol. 14(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    2. Matúš Šucha & Ralf Risser & Kristýna Honzíčková, 2021. "Advanced Driver Assistant Systems Focused on Pedestrians’ Safety: A User Experience Approach," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    3. Qian Cheng & Xiaobei Jiang & Haodong Zhang & Wuhong Wang & Chunwen Sun, 2020. "Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    4. Sujanie Peiris & Stuart Newstead & Janneke Berecki-Gisolf & Bernard Chen & Brian Fildes, 2022. "Quantifying the Lost Safety Benefits of ADAS Technologies Due to Inadequate Supporting Road Infrastructure," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    5. Jaeheon Choi & Kyuil Lee & Hyunmyung Kim & Sunghi An & Daisik Nam, 2020. "Classification of Inter-Urban Highway Drivers’ Resting Behavior for Advanced Driver-Assistance System Technologies using Vehicle Trajectory Data from Car Navigation Systems," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    6. Bruce Corben & Sujanie Peiris & Suryaprakash Mishra, 2022. "The Importance of Adopting a Safe System Approach—Translation of Principles into Practical Solutions," Sustainability, MDPI, vol. 14(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9512-:d:620707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.