IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3759-d525595.html
   My bibliography  Save this article

Association between Migraine and the Risk of Stroke: A Bayesian Meta-Analysis

Author

Listed:
  • Kim-Ngan Ta-Thi

    (School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
    Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Kai-Jen Chuang

    (School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
    Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan)

  • Chyi-Huey Bai

    (School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
    Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan)

Abstract

There are still inconsistent results about association between migraine and stroke risk in studies. This paper was to review findings on the association between migraine (with or without aura) and stroke risk. We searched articles in the Embase and PubMed up to January 2021. Two independent reviewers extracted basic data from individual studies using a standardized form. Quality of studies was also assessed using the Newcastle–Ottawa Scale. We conducted a meta-analysis, both classical and Bayesian approaches. We identified 17 eligible studies with a sample size more than 2,788,000 participants. In the fixed effect model, the results demonstrated that migraine was positively associated with the risk of total stroke, hemorrhagic stroke, and ischemic stroke. Nevertheless, migraine was associated with only total stroke in the random effects model (risk ratio (RR) 1.31, 95%CI: 1.06–1.62). The probability that migraine increased total stroke risk was 0.978 (RR 1.31; 95% credible interval (CrI): 1.01–1.72). All types of migraine were not associated with ischemic stroke and hemorrhagic stroke. Under three prior distributions, there was no association between migraine and the risk of ischemic stroke or hemorrhagic stroke. Under the non-informative prior and enthusiastic prior, there was a high probability that migraine was associated with total stroke risk.

Suggested Citation

  • Kim-Ngan Ta-Thi & Kai-Jen Chuang & Chyi-Huey Bai, 2021. "Association between Migraine and the Risk of Stroke: A Bayesian Meta-Analysis," Sustainability, MDPI, vol. 13(7), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3759-:d:525595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sellke T. & Bayarri M. J. & Berger J. O., 2001. "Calibration of rho Values for Testing Precise Null Hypotheses," The American Statistician, American Statistical Association, vol. 55, pages 62-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    2. Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2008. "Bayesian inference in a cointegrating panel data model," Advances in Econometrics, in: Bayesian Econometrics, pages 433-469, Emerald Group Publishing Limited.
    3. Christopher Snyder & Ran Zhuo, 2018. "Sniff Tests as a Screen in the Publication Process: Throwing out the Wheat with the Chaff," NBER Working Papers 25058, National Bureau of Economic Research, Inc.
    4. Bachmann, Dirk & Dette, Holger, 2004. "A note on the Bickel-Rosenblatt test in autoregressive time series," Technical Reports 2004,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Julia Roloff & Michael J. Zyphur, 2019. "Null Findings, Replications and Preregistered Studies in Business Ethics Research," Journal of Business Ethics, Springer, vol. 160(3), pages 609-619, December.
    6. Pathairat Pastpipatkul & Petchaluck Boonyakunakorn & Kanyaphon Phetsakda, 2020. "The Impact of Thailand’s Openness on Bilateral Trade between Thailand and Japan: Copula-Based Markov Switching Seemingly Unrelated Regression Model," Economies, MDPI, vol. 8(1), pages 1-13, January.
    7. Ferguson John P. & Palejev Dean, 2014. "P-value calibration for multiple testing problems in genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(6), pages 659-673, December.
    8. Sebastian Loth & Katharina Jettka & Manuel Giuliani & Stefan Kopp & Jan P de Ruiter, 2018. "Confidence in uncertainty: Error cost and commitment in early speech hypotheses," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-30, August.
    9. Joris Mulder & James O. Berger & Víctor Peña & M. J. Bayarri, 2021. "On the prevalence of information inconsistency in normal linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 103-132, March.
    10. Herbert Hoijtink & Irene Klugkist, 2007. "Comparison of Hypothesis Testing and Bayesian Model Selection," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(1), pages 73-91, February.
    11. Guido Consonni & Roberta Paroli, 2017. "Objective Bayesian Comparison of Constrained Analysis of Variance Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 589-609, September.
    12. Alessio Farcomeni, 2003. "Unified conditional frequentist and Bayesian testing: computations in practice and sample size determination," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 243-266.
    13. Kim, Jae H. & Ji, Philip Inyeob, 2015. "Significance testing in empirical finance: A critical review and assessment," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 1-14.
    14. Stephen Gorard, 2017. "Significance Testing is Still Wrong, and Damages Real Lives: A Brief Reply to Spreckelsen and Van Der Horst, and Nicholson and McCusker," Sociological Research Online, , vol. 22(2), pages 204-210, May.
    15. J. S. Butler & Peter Jones, 2018. "Theoretical and empirical distributions of the p value," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 1-30, April.
    16. Snyder, Christopher & Zhuo, Ran, 2018. "Sniff Tests in Economics: Aggregate Distribution of Their Probability Values and Implications for Publication Bias," MetaArXiv 8vdrh, Center for Open Science.
    17. Daniel J. Benjamin & James O. Berger & Magnus Johannesson & Brian A. Nosek & E.-J. Wagenmakers & Richard Berk & Kenneth A. Bollen & Björn Brembs & Lawrence Brown & Colin Camerer & David Cesarini & Chr, 2018. "Redefine statistical significance," Nature Human Behaviour, Nature, vol. 2(1), pages 6-10, January.
      • Daniel Benjamin & James Berger & Magnus Johannesson & Brian Nosek & E. Wagenmakers & Richard Berk & Kenneth Bollen & Bjorn Brembs & Lawrence Brown & Colin Camerer & David Cesarini & Christopher Chambe, 2017. "Redefine Statistical Significance," Artefactual Field Experiments 00612, The Field Experiments Website.
    18. Hirschauer Norbert & Mußhoff Oliver & Grüner Sven & Frey Ulrich & Theesfeld Insa & Wagner Peter, 2016. "Die Interpretation des p-Wertes – Grundsätzliche Missverständnisse," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(5), pages 557-575, October.
    19. Pérez, María-Eglée & Pericchi, Luis Raúl, 2014. "Changing statistical significance with the amount of information: The adaptive α significance level," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 20-24.
    20. Dickhaus Thorsten, 2015. "Simultaneous Bayesian analysis of contingency tables in genetic association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(4), pages 347-360, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3759-:d:525595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.