IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3643-d523860.html
   My bibliography  Save this article

Strategies of Two-Level Green Technology Investments for Coal Supply Chain under Different Dominant Modes

Author

Listed:
  • Bowen Da

    (School of Economy and Management, China University of Mining and Technology, Xuzhou 221116, China
    School of Xuhai, China University of Mining and Technology, Xuzhou 221116, China)

  • Chuanzhe Liu

    (School of Economy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Nana Liu

    (School of Economy and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Sidun Fan

    (School of Humanities and Arts, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

We consider a coal supply chain with a coal enterprise and a manufacturer, where the coal enterprise invests in clean coal technology, and the manufacturer invests in carbon reduction technology. The government offers subsidies for the investments of clean coal technology and carbon reduction technology. We examine optimal clean coal technology inputs in a coal enterprise and carbon reduction quantity in a manufacturer under the modes of coal-enterprise-led and manufacturer-led, respectively, using a Stackelberg game theory model. We obtain some interesting results. First, carbon reduction by the manufacturer is restrained when clean coal technology cost and carbon reduction cost are increased, regardless of the dominant modes, and clean coal technology input decreases when clean coal technology cost increases; however, a high carbon reduction cost has no effect on clean coal technology input when the manufacturer leads. Second, the clean coal technology subsidy for coal enterprises promotes clean coal technology inputs and carbon reductions, and the carbon reduction subsidy encourages carbon reduction without supporting clean coal technology input. Last, carbon reduction performance is better achieved under the manufacturer-led model than the coal-enterprise-led model. However, it should be noticed that the capital resource only relies on government subsidy in this article. In the future, this study could be used for green supply chain investment, and could be helpful for sustainability development.

Suggested Citation

  • Bowen Da & Chuanzhe Liu & Nana Liu & Sidun Fan, 2021. "Strategies of Two-Level Green Technology Investments for Coal Supply Chain under Different Dominant Modes," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3643-:d:523860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jian Hou & Jinghua Wang & Jiancheng Chen & Fang He, 2020. "Does urban haze pollution inversely drive down the energy intensity? A perspective from environmental regulation," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 343-351, January.
    2. Shaofu Du & Jiaang Zhu & Huifang Jiao & Wuyi Ye, 2015. "Game-theoretical analysis for supply chain with consumer preference to low carbon," International Journal of Production Research, Taylor & Francis Journals, vol. 53(12), pages 3753-3768, June.
    3. Fan, Ruguo & Dong, Lili, 2018. "The dynamic analysis and simulation of government subsidy strategies in low-carbon diffusion considering the behavior of heterogeneous agents," Energy Policy, Elsevier, vol. 117(C), pages 252-262.
    4. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    5. K. J. Noorman & K. J. Kamminga, 1998. "Reducing residential energy use for a sustainable future: fossil fuel taxation as a tool to reduce the indirect energy demand and related CO 2 emissions of Dutch households," Sustainable Development, John Wiley & Sons, Ltd., vol. 6(3), pages 143-153.
    6. Xiaopeng Guo & Yanan Wei & Jiahai Yuan, 2016. "Will the Steam Coal Price Rebound under the New Economy Normalcy in China?," Energies, MDPI, vol. 9(9), pages 1-13, September.
    7. Bowen Da & Chuanzhe Liu & Nana Liu & Yufei Xia & Fangming Xie, 2019. "Coal-Electric Power Supply Chain Reduction and Operation Strategy under the Cap-and-Trade Model and Green Financial Background," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    8. Wu, Tao & Zhang, Li-Guo & Ge, Teng, 2019. "Managing financing risk in capacity investment under green supply chain competition," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 37-44.
    9. Baiyun Yuan & Bingmei Gu & Chunming Xu, 2019. "The Multi-Period Dynamic Optimization with Carbon Emissions Reduction under Cap-and-Trade," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-12, March.
    10. Shaofu Du & Li Hu & Li Wang, 2017. "Low-carbon supply policies and supply chain performance with carbon concerned demand," Annals of Operations Research, Springer, vol. 255(1), pages 569-590, August.
    11. Wei Lisi & Rui Zhu & Chunlin Yuan, 2020. "Embracing green innovation via green supply chain learning: The moderating role of green technology turbulence," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 155-168, January.
    12. Tang, Xu & Snowden, Simon & McLellan, Benjamin C. & Höök, Mikael, 2015. "Clean coal use in China: Challenges and policy implications," Energy Policy, Elsevier, vol. 87(C), pages 517-523.
    13. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    14. Li, Guangyao & Yang, Jin & Chen, Dingjiang & Hu, Shanying, 2017. "Impacts of the coming emission trading scheme on China’s coal-to-materials industry in 2020," Applied Energy, Elsevier, vol. 195(C), pages 837-849.
    15. Xiaoyan Wang & Minggao Xue & Lu Xing, 2018. "Analysis of Carbon Emission Reduction in a Dual-Channel Supply Chain with Cap-And-Trade Regulation and Low-Carbon Preference," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    16. Jan Christoph Steckel & Michael Jakob & Christian Flachsland & Ulrike Kornek & Kai Lessmann & Ottmar Edenhofer, 2017. "From climate finance toward sustainable development finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(1), January.
    17. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    18. Chai, Qiangfei & Xiao, Zhongdong & Lai, Kee-hung & Zhou, Guanghui, 2018. "Can carbon cap and trade mechanism be beneficial for remanufacturing?," International Journal of Production Economics, Elsevier, vol. 203(C), pages 311-321.
    19. Sovacool, Benjamin K. & Lipson, Matthew M. & Chard, Rose, 2019. "Temporality, vulnerability, and energy justice in household low carbon innovations," Energy Policy, Elsevier, vol. 128(C), pages 495-504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhong Yuan & Bowen Zhang & Lei Wang & Li Wang, 2022. "Low-Carbon Strategies Considering Corporate Environmental Responsibility: Based on Carbon Trading and Carbon Reduction Technology Investment," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    2. A-Ru-Han Bao & Yao Liu & Jun Dong & Zheng-Peng Chen & Zhen-Jie Chen & Chen Wu, 2022. "Evolutionary Game Analysis of Co-Opetition Strategy in Energy Big Data Ecosystem under Government Intervention," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    4. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Lin, Haifei & Shu, Chi-Min & Shuang, Haiqing & Wei, Zongyong, 2023. "Greenhouse gas protection and control based upon the evolution of overburden fractures under coal mining: A review of methods, influencing factors, and techniques," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xujin Pu & Zhiping Song & Guanghua Han, 2018. "Competition among Supply Chains and Governmental Policy: Considering Consumers’ Low-Carbon Preference," IJERPH, MDPI, vol. 15(9), pages 1-21, September.
    2. Zhi-Hua Hu & Shu-Wen Wang, 2022. "An Evolutionary Game Model Between Governments and Manufacturers Considering Carbon Taxes, Subsidies, and Consumers’ Low-Carbon Preference," Dynamic Games and Applications, Springer, vol. 12(2), pages 513-551, June.
    3. Yunting Feng & Yong Geng & Ge Zhao & Mengya Li, 2022. "Carbon Emission Constraint Policy in an OEM and Outsourcing Remanufacturer Supply Chain with Consumer Preferences," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    4. Weihao Wang & Deqing Ma & Jinsong Hu, 2022. "Dynamic Carbon Reduction and Marketing Strategies with Consumers’ Environmental Awareness under Cap-and-Trade Regulation," Sustainability, MDPI, vol. 14(16), pages 1-31, August.
    5. Lei Yang & Meng Chen & Yiji Cai & Sang-Bing Tsai, 2018. "Manufacturer’s Decision as Consumers’ Low-Carbon Preference Grows," Sustainability, MDPI, vol. 10(4), pages 1-26, April.
    6. Shoufeng Ji & Dan Zhao & Xiaoshuai Peng, 2018. "Joint Decisions on Emission Reduction and Inventory Replenishment with Overconfidence and Low-Carbon Preference," Sustainability, MDPI, vol. 10(4), pages 1-21, April.
    7. Yang, Lei & Hu, Yijuan & Huang, Lijuan, 2020. "Collecting mode selection in a remanufacturing supply chain under cap-and-trade regulation," European Journal of Operational Research, Elsevier, vol. 287(2), pages 480-496.
    8. Jun Wang & Xianxue Cheng & Xinyu Wang & Hongtao Yang & Shuhua Zhang, 2019. "Myopic versus Farsighted Behaviors in a Low-Carbon Supply Chain with Reference Emission Effects," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    9. Weisheng Deng & Lu Liu, 2019. "Comparison of Carbon Emission Reduction Modes: Impacts of Capital Constraint and Risk Aversion," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    10. Yuyin Yi & Jinxi Li, 2018. "Cost-Sharing Contracts for Energy Saving and Emissions Reduction of a Supply Chain under the Conditions of Government Subsidies and a Carbon Tax," Sustainability, MDPI, vol. 10(3), pages 1-33, March.
    11. Jiaping Xie & Jing Li & Ling Liang & Xu Fang & Guang Yang & Lihong Wei, 2020. "Contracting Emissions Reduction Supply Chain Based on Market Low-Carbon Preference and Carbon Intensity Constraint," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-34, March.
    12. Bowen Da & Chuanzhe Liu & Nana Liu & Yufei Xia & Fangming Xie, 2019. "Coal-Electric Power Supply Chain Reduction and Operation Strategy under the Cap-and-Trade Model and Green Financial Background," Sustainability, MDPI, vol. 11(11), pages 1-17, May.
    13. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    14. Paredes, B.M. & Paredes, J.P. & García, R., 2023. "Integration of biocoal in distributed energy systems: A potential case study in the Spanish coal-mining regions," Energy, Elsevier, vol. 263(PC).
    15. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
    16. Qiang Han & Yuyan Wang, 2018. "Decision and Coordination in a Low-Carbon E-Supply Chain Considering the Manufacturer’s Carbon Emission Reduction Behavior," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    17. Yanhong Yuan & Yaru Zhang & Lei Wang & Li Wang, 2022. "Coping Decisions of Production Enterprises under Low-Carbon Economy," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    18. Wenli Qiang & Shuwen Niu & Xiaojie Liu & Xiang Wang & Zhuo Jia & Runqi Dai, 2018. "Analysis of generation cost changes during China’s energy transition," Energy & Environment, , vol. 29(4), pages 456-472, June.
    19. Chang Su & Xiaojing Liu & Wenyi Du, 2020. "Green Supply Chain Decisions Considering Consumers’ Low-Carbon Awareness under Different Government Subsidies," Sustainability, MDPI, vol. 12(6), pages 1-12, March.
    20. Limin Su & Yongchao Cao & Wenjuan Zhang, 2023. "Low-Carbon Supply Chain Operation Decisions and Coordination Strategies Considering the Consumers’ Preferences," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3643-:d:523860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.