IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3348-d519543.html
   My bibliography  Save this article

Study on the Contradiction between Population and Cultivated Land and the Priority Protection of Cultivated Land in the Policy of Poverty Alleviation: A Case Study of the Upper Reaches of Min River, Sichuan Province, China

Author

Listed:
  • Li Chen

    (School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
    College of Resources and Environmental Engineering, Mianyang Normal University, Mianyang 621000, China
    Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China)

  • Qing Wang

    (School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

The contradiction between population and cultivated land has always been an urgent global problem, and one that is particularly prominent in China. Based on the spatial–temporal evolution of cultivated land, this paper discusses the human–land contradiction and its development trend. Then, according to the threshold of human–land contradiction and different protection objectives, the priority protection area of cultivated land was simulated. The results showed that: (1) the cellular automata (CA)–Markov model is suitable for the study area. The cultivated land in the study area increased at a rate of 4.40 sq km per year; (2) the spatial and temporal change in the cultivated land in Songpan was the largest. The center of gravity of cultivated land is moving to the northeast, and the moving rate is increasing year on year; (3) 90% of the study area was in the human–land coordination and the change in the ratio of accumulation and cultivation in some areas (such as Songpan) is increasing, making the human–land contradiction worse; (4) under a protection target of 25–100%, the priority protection area of cultivated land increased from 2.05 × 10 3 km 2 to 3.46 × 10 3 km 2 , and the patch aggregation degree was strengthened. This study was of great significance for optimizing the distribution of cultivated land and promoting the sustainable development of land resources.

Suggested Citation

  • Li Chen & Qing Wang, 2021. "Study on the Contradiction between Population and Cultivated Land and the Priority Protection of Cultivated Land in the Policy of Poverty Alleviation: A Case Study of the Upper Reaches of Min River, S," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3348-:d:519543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ondřej Cudlín & Vilém Pechanec & Jan Purkyt & Karel Chobot & Luca Salvati & Pavel Cudlín, 2020. "Are Valuable and Representative Natural Habitats Sufficiently Protected? Application of Marxan model in the Czech Republic," Sustainability, MDPI, vol. 12(1), pages 1-25, January.
    2. Su, Yue & Qian, Kui & Lin, Lin & Wang, Ke & Guan, Tao & Gan, Muye, 2020. "Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection," Land Use Policy, Elsevier, vol. 92(C).
    3. Hui Zhang & Yumeng Zhang & Shuang Wu & Rong Cai, 2020. "The Effect of Labor Migration on Farmers’ Cultivated Land Quality Protection," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    4. Kui Yang & Taiyang Zhong & Yu Zhang & Qi Wen, 2020. "Total factor productivity of urban land use in China," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1784-1803, December.
    5. Han Cai & Kun Ma & Yunjian Luo, 2019. "Geographical Modeling of Spatial Interaction between Built-Up Land Sprawl and Cultivated Landscape Eco-Security under Urbanization Gradient," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    6. Jin, Gui & Chen, Kun & Wang, Pei & Guo, Baishu & Dong, Yin & Yang, Jun, 2019. "Trade-offs in land-use competition and sustainable land development in the North China Plain," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 36-46.
    7. Yangmeina Yang & Yu Zhang & Qingshan Yang & Jian Liu & Fang Huang, 2019. "Coupling Relationship between Agricultural Labor and Agricultural Production Against the Background of Rural Shrinkage: A Case Study of Songnen Plain, China," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    8. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    9. Chaozheng Zhang & Yangyue Su & Gangqiao Yang & Danling Chen & Rongxuan Yang, 2020. "Spatial-Temporal Characteristics of Cultivated Land Use Efficiency in Major Function-Oriented Zones: A Case Study of Zhejiang Province, China," Land, MDPI, vol. 9(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajuan Wang & Xi Wu & Hongbo Zhu, 2022. "Spatio-Temporal Pattern and Spatial Disequilibrium of Cultivated Land Use Efficiency in China: An Empirical Study Based on 342 Prefecture-Level Cities," Land, MDPI, vol. 11(10), pages 1-15, October.
    2. Baoshu Wu & Meifang Liu & Yufei Wan & Zhenjiang Song, 2023. "Evolution and Coordination of Cultivated Land Multifunctionality in Poyang Lake Ecological Economic Zone," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Quanhua Hou & Shihan Chen & Yitong Miao & Yahui Zhang & Su Chen & Xiaoyang Fan & Yaqiong Duan & Lingda Zhang, 2023. "Management and Control of Agricultural Production Space in the Yanhe River Basin Based on Peasant Household Behavior," Sustainability, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongtian Zhang & Jianfei Lu, 2022. "Spatial–Temporal Pattern and Convergence Characteristics of Provincial Urban Land Use Efficiency under Environmental Constraints in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    2. Zhaoxia Guo & Qinqin Guo & Yujie Cai & Ge Wang, 2021. "Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China," Land, MDPI, vol. 10(11), pages 1-26, November.
    3. Zhiyuan Zhu & Jiajia Duan & Ruolan Li & Yongzhong Feng, 2022. "Spatial Evolution, Driving Mechanism, and Patch Prediction of Grain-Producing Cultivated Land in China," Agriculture, MDPI, vol. 12(6), pages 1-12, June.
    4. Jie Zhang & Meiqiu Chen & Chang Huang & Zhaohao Lai, 2022. "Labor Endowment, Cultivated Land Fragmentation, and Ecological Farming Adoption Strategies among Farmers in Jiangxi Province, China," Land, MDPI, vol. 11(5), pages 1-17, May.
    5. Pengnan Xiao & Jie Xu & Zupeng Yu & Peng Qian & Mengyao Lu & Chao Ma, 2022. "Spatiotemporal Pattern Differentiation and Influencing Factors of Cultivated Land Use Efficiency in Hubei Province under Carbon Emission Constraints," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    6. Fang Tang & Yangbing Li & Xiuming Liu & Juan Huang & Yiyi Zhang & Qian Xu, 2023. "Understanding the Relationships between Landscape Eco-Security and Multifunctionality in Cropland: Implications for Supporting Cropland Management Decisions," IJERPH, MDPI, vol. 20(3), pages 1-26, January.
    7. Bohua Yu & Wei Song & Yanqing Lang, 2017. "Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    8. Li Yu & Zhanqi Wang & Hongwei Zhang & Chao Wei, 2020. "Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    9. Xiangqian Wang & Shudong Wang & Yongqiu Xia, 2022. "Evaluation and Dynamic Evolution of the Total Factor Environmental Efficiency in China’s Mining Industry," Energies, MDPI, vol. 15(3), pages 1-19, February.
    10. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    11. Shuting Liu & Junsong Jia & Hanzhi Huang & Dilan Chen & Yexi Zhong & Yangming Zhou, 2023. "China’s CO 2 Emissions: A Thorough Analysis of Spatiotemporal Characteristics and Sustainable Policy from the Agricultural Land-Use Perspective during 1995–2020," Land, MDPI, vol. 12(6), pages 1-20, June.
    12. Jiangsu Li & Weihua Li & Bo Li & Liangrong Duan & Tianjiao Zhang & Qi Jia, 2022. "Construction Land Expansion of Resource-Based Cities in China: Spatiotemporal Characteristics and Driving Factors," IJERPH, MDPI, vol. 19(23), pages 1-20, December.
    13. Qing Li & Xueyan Zhang, 2022. "Identifying Peach Trees in Cultivated Land Using U-Net Algorithm," Land, MDPI, vol. 11(7), pages 1-15, July.
    14. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    15. Kuang, Bing & Han, Jing & Lu, Xinhai & Zhang, Xupeng & Fan, Xiangyu, 2020. "Quantitative evaluation of China’s cultivated land protection policies based on the PMC-Index model," Land Use Policy, Elsevier, vol. 99(C).
    16. Yanru Zhao & Xiaomin Zhao & Xinyi Huang & Jiaxin Guo & Guohui Chen, 2022. "Identifying a Period of Spatial Land Use Conflicts and Their Driving Forces in the Pearl River Delta," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    17. Malin Song & Weiliang Tao, 2022. "Coupling and coordination analysis of China's regional urban‐rural integration and land‐use efficiency," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1384-1413, September.
    18. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    19. Jiachen Ning & Pingyu Zhang & Qifeng Yang & Zuopeng Ma, 2023. "Spatial Pattern of Farmland Transfer in Liaoning Province, China," Agriculture, MDPI, vol. 13(7), pages 1-19, July.
    20. Guanglong Dong & Erqi Xu & Hongqi Zhang, 2015. "Spatiotemporal Variation of Driving Forces for Settlement Expansion in Different Types of Counties," Sustainability, MDPI, vol. 8(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3348-:d:519543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.