IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3334-d519304.html
   My bibliography  Save this article

Characteristics of Conceptually Related Smart Cities (CRSCs) Services from the Perspective of Sustainability

Author

Listed:
  • Nammi Kim

    (Department of Urban Planning and Design, University of Seoul, Seoul 02504, Korea)

  • Seungwoo Yang

    (Department of Urban Planning and Design, University of Seoul, Seoul 02504, Korea)

Abstract

A smart city has developed gradually with the evolution of services and ICT technologies to achieve sustainability. Many academic and governmental documents reference this; however, there is no existing theoretical or empirical study on the characteristics of smart city services regarding sustainability. In this sense, this study aims to clarify characteristics of Conceptually Related Smart Cities (CRSCs) services from sustainability. The methodologies adopt a matrix taxonomy to sort the previous indicators in the first step. It also utilizes a keyword analysis based on a literature review to identify the characteristics of two concepts. Three outcomes result from the steps of theoretical structures. Firstly, this study develops SSC service indicators based on the synthesis of Sustainable Smart City (SSC) and Smart City and sustainable city. The second outcome is an identification of the relation between SSC services and Conceptually Related Smart Cities. Lastly, the study clarifies the significance of citizen engagement based on the evolutionary concept by typifying service development in the lens of sustainability in CRSCs. This study is worthwhile for understanding smart city services and managing different featured smart cities from a sustainability perspective.

Suggested Citation

  • Nammi Kim & Seungwoo Yang, 2021. "Characteristics of Conceptually Related Smart Cities (CRSCs) Services from the Perspective of Sustainability," Sustainability, MDPI, vol. 13(6), pages 1-48, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3334-:d:519304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    2. Sotiris Zygiaris, 2013. "Smart City Reference Model: Assisting Planners to Conceptualize the Building of Smart City Innovation Ecosystems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 217-231, June.
    3. Maria-Lluïsa Marsal-Llacuna, 2016. "City Indicators on Social Sustainability as Standardization Technologies for Smarter (Citizen-Centered) Governance of Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1193-1216, September.
    4. Jovani Taveira de Souza & Antonio Carlos de Francisco & Cassiano Moro Piekarski & Guilherme Francisco do Prado, 2019. "Data Mining and Machine Learning to Promote Smart Cities: A Systematic Review from 2000 to 2018," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
    5. Leonidas G. Anthopoulos, 2017. "Understanding Smart Cities: A Tool for Smart Government or an Industrial Trick?," Public Administration and Information Technology, Springer, number 978-3-319-57015-0, June.
    6. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    7. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    8. Lee, Jung Hoon & Phaal, Robert & Lee, Sang-Ho, 2013. "An integrated service-device-technology roadmap for smart city development," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 286-306.
    9. Minako Hara & Tomomi Nagao & Shinsuke Hannoe & Jiro Nakamura, 2016. "New Key Performance Indicators for a Smart Sustainable City," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    10. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    11. Mingfeng Wang & Felix Haifeng Liao & Juan Lin & Li Huang & Chengcheng Gu & Yehua Dennis Wei, 2016. "The Making of a Sustainable Wireless City? Mapping Public Wi-Fi Access in Shanghai," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    12. Gusti Ayu Made Suartika & Alexander Cuthbert, 2020. "The Sustainable Imperative—Smart Cities, Technology and Development," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    13. José-Luis Alfaro-Navarro & Víctor-Raúl López-Ruiz & Domingo Nevado Peña, 2017. "A New Sustainability City Index Based on Intellectual Capital Approach," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
    14. Miltiadis D. Lytras & Anna Visvizi, 2018. "Who Uses Smart City Services and What to Make of It: Toward Interdisciplinary Smart Cities Research," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    15. John V. Winters, 2011. "Why Are Smart Cities Growing? Who Moves And Who Stays," Journal of Regional Science, Wiley Blackwell, vol. 51(2), pages 253-270, May.
    16. Margarita Angelidou, 2016. "Four European Smart City Strategies," International Journal of Social Science Studies, Redfame publishing, vol. 4(4), pages 18-30, April.
    17. Annalisa Cocchia, 2014. "Smart and Digital City: A Systematic Literature Review," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 13-43, Springer.
    18. Koichiro Mori & Toyonobu Fujii & Tsuguta Yamashita & Yutaka Mimura & Yuta Uchiyama & Kengo Hayashi, 2015. "Visualization of a City Sustainability Index (CSI): Towards Transdisciplinary Approaches Involving Multiple Stakeholders," Sustainability, MDPI, vol. 7(9), pages 1-23, September.
    19. Leonidas G. Anthopoulos, 2015. "Understanding the Smart City Domain: A Literature Review," Public Administration and Information Technology, in: Manuel Pedro Rodríguez-Bolívar (ed.), Transforming City Governments for Successful Smart Cities, edition 127, pages 9-21, Springer.
    20. Chiara Garau & Valentina Maria Pavan, 2018. "Evaluating Urban Quality: Indicators and Assessment Tools for Smart Sustainable Cities," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    21. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radosław Malik & Anna Visvizi & Orlando Troisi & Mara Grimaldi, 2022. "Smart Services in Smart Cities: Insights from Science Mapping Analysis," Sustainability, MDPI, vol. 14(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    3. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    4. Koutra, Sesil & Becue, Vincent & Ioakimidis, Christos S., 2019. "Searching for the ‘smart’ definition through its spatial approach," Energy, Elsevier, vol. 169(C), pages 924-936.
    5. Schiavone, Francesco & Paolone, Francesco & Mancini, Daniela, 2019. "Business model innovation for urban smartization," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 210-219.
    6. Dubravka Jurlina Alibegovic & Zeljka Kordej-De Villa & Mislav Sagovac, 2018. "Smart City Indicators: Can They Improve Governance in Croatian Large Cities?," Working Papers 1805, The Institute of Economics, Zagreb.
    7. Guido Perboli & Mariangela Rosano, 2020. "A Taxonomic Analysis of Smart City Projects in North America and Europe," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
    8. Anna D’Auria & Marco Tregua & Manuel Carlos Vallejo-Martos, 2018. "Modern Conceptions of Cities as Smart and Sustainable and Their Commonalities," Sustainability, MDPI, vol. 10(8), pages 1-18, July.
    9. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    10. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Combining co-citation clustering and text-based analysis to reveal the main development paths of smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 56-69.
    11. Camboim, Guilherme Freitas & Zawislak, Paulo Antônio & Pufal, Nathália Amarante, 2019. "Driving elements to make cities smarter: Evidences from European projects," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 154-167.
    12. Mora, Luca & Deakin, Mark & Reid, Alasdair, 2019. "Strategic principles for smart city development: A multiple case study analysis of European best practices," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 70-97.
    13. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    14. Karima Kourtit, 2021. "City intelligence for enhancing urban performance value: a conceptual study on data decomposition in smart cities," Asia-Pacific Journal of Regional Science, Springer, vol. 5(1), pages 191-222, February.
    15. Paula Bajdor & Marta Starostka-Patyk, 2021. "Smart City: A Bibliometric Analysis of Conceptual Dimensions and Areas," Energies, MDPI, vol. 14(14), pages 1-28, July.
    16. Nripendra P. Rana & Sunil Luthra & Sachin Kumar Mangla & Rubina Islam & Sian Roderick & Yogesh K. Dwivedi, 2019. "Barriers to the Development of Smart Cities in Indian Context," Information Systems Frontiers, Springer, vol. 21(3), pages 503-525, June.
    17. Gabrielli do Livramento Gonçalves & Walter Leal Filho & Samara da Silva Neiva & André Borchardt Deggau & Manoela de Oliveira Veras & Flávio Ceci & Maurício Andrade de Lima & José Baltazar Salgueirinho, 2021. "The Impacts of the Fourth Industrial Revolution on Smart and Sustainable Cities," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    18. Oleg Golubchikov & Mary J. Thornbush, 2022. "Smart Cities as Hybrid Spaces of Governance: Beyond the Hard/Soft Dichotomy in Cyber-Urbanization," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    19. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    20. Wojciech Kozlowski & Kacper Suwar, 2021. "Smart City: Definitions, Dimensions, and Initiatives," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 3), pages 509-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3334-:d:519304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.