IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3208-d517108.html
   My bibliography  Save this article

An Improved Gray Wolf Optimization Algorithm to Solve Engineering Problems

Author

Listed:
  • Yu Li

    (Institute of Management Science and Engineering, and School of Business, Henan University, Kaifeng 475004, China)

  • Xiaoxiao Lin

    (School of Business, Henan University, Kaifeng 475004, China)

  • Jingsen Liu

    (Institute of Intelligent Network Systems, and Software School, Henan University, Kaifeng 475004, China)

Abstract

With the rapid development of the economy, the disparity between supply and demand of resources is becoming increasingly prominent in engineering design. In this paper, an improved gray wolf optimization algorithm is proposed (IGWO) to optimize engineering design problems. First, a tent map is used to generate the initial location of the gray wolf population, which evenly distributes the gray wolf population and lays the foundation for a diversified global search process. Second, Gaussian mutation perturbation is used to perform various operations on the current optimal solution to avoid the algorithm falling into local optima. Finally, a cosine control factor is introduced to balance the global and local exploration capabilities of the algorithm and to improve the convergence speed. The IGWO algorithm is applied to four engineering optimization problems with different typical complexity, including a pressure vessel design, a tension spring design, a welding beam design and a three-truss design. The experimental results show that the IGWO algorithm is superior to other comparison algorithms in terms of optimal performance, solution stability, applicability and effectiveness; and can better solve the problem of resource waste in engineering design. The IGWO also optimizes 23 different types of function problems and uses Wilcoxon rank-sum test and Friedman test to verify the 23 test problems. The results show that the IGWO algorithm has higher convergence speed, convergence precision and robustness compared with other algorithms.

Suggested Citation

  • Yu Li & Xiaoxiao Lin & Jingsen Liu, 2021. "An Improved Gray Wolf Optimization Algorithm to Solve Engineering Problems," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3208-:d:517108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Huiling & Wang, Mingjing & Zhao, Xuehua, 2020. "A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongmao Xiao & Renqing Zhao & Wei Yan & Xiaoyong Zhu, 2022. "Analysis and Evaluation of Energy Consumption and Carbon Emission Levels of Products Produced by Different Kinds of Equipment Based on Green Development Concept," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    2. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Zhao & Bochen Zhang & Xiwang Guo & Liang Qi & Zhiwu Li, 2022. "Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-31, November.
    2. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    3. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    4. Ren, Hao & Li, Jun & Chen, Huiling & Li, ChenYang, 2021. "Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 380-409.
    5. Akram Belazi & Héctor Migallón & Daniel Gónzalez-Sánchez & Jorge Gónzalez-García & Antonio Jimeno-Morenilla & José-Luis Sánchez-Romero, 2022. "Enhanced Parallel Sine Cosine Algorithm for Constrained and Unconstrained Optimization," Mathematics, MDPI, vol. 10(7), pages 1-47, April.
    6. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
    7. Yu, Caiyang & Cai, Zhennao & Ye, Xiaojia & Wang, Mingjing & Zhao, Xuehua & Liang, Guoxi & Chen, Huiling & Li, Chengye, 2020. "Quantum-like mutation-induced dragonfly-inspired optimization approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 259-289.
    8. Laith Abualigah & Ali Diabat & Raed Abu Zitar, 2022. "Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-42, November.
    9. Jiao, Shan & Chong, Guoshuang & Huang, Changcheng & Hu, Hanqing & Wang, Mingjing & Heidari, Ali Asghar & Chen, Huiling & Zhao, Xuehua, 2020. "Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3208-:d:517108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.