IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2483-d505720.html
   My bibliography  Save this article

Shared Automated Mobility with Demand-Side Cooperation: A Proof-of-Concept Microsimulation Study

Author

Listed:
  • Lei Zhu

    (Department of System Engineering and Engineering Management, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA)

  • Zhouqiao Zhao

    (Center for Environmental Research & Technology, University of California at Riverside, Riverside, CA 92507, USA)

  • Guoyuan Wu

    (Center for Environmental Research & Technology, University of California at Riverside, Riverside, CA 92507, USA)

Abstract

Most existing shared automated mobility (SAM) services assume the door-to-door manner, i.e., the pickup and drop-off (PUDO) locations are the places requested by the customers (or demand-side). While some mobility services offer more affordable riding costs in exchange for a little walking effort from customers, their rationales and induced impacts (in terms of mobility and sustainability) from the system perspective are not clear. This study proposes a demand-side cooperative shared automated mobility (DC-SAM) service framework, aiming to fill this knowledge gap and to assess the mobility and sustainability impacts. The optimal ride matching problem is formulated and solved in an online manner through a micro-simulation model, Simulation of Urban Mobility (SUMO). The objective is to maximize the profit (considering both the revenue and cost) of the proposed SAM service, considering the constraints in seat capacities of shared automated vehicles (SAVs) and comfortable walking distance from the perspective of customers. A case study on a portion of a New York City (NYC) network with a pre-defined fleet size demonstrated the efficacy and promise of the proposed system. The results show that the proposed DC-SAM service can not only significantly reduce the SAV’s operating costs in terms of vehicle-miles traveled (VMT), vehicle-hours traveled (VHT), and vehicle energy consumption (VEC) by up to 53, 46 and 51%, respectively, but can also considerably improve the customer service by 30 and 56%, with regard to customer waiting time (CWT) and trip detour factor (TDF), compared to a heuristic service model. In addition, the demand-side cooperation strategy can bring about additional system-wide mobility and sustainability benefits in the range of 4–10%.

Suggested Citation

  • Lei Zhu & Zhouqiao Zhao & Guoyuan Wu, 2021. "Shared Automated Mobility with Demand-Side Cooperation: A Proof-of-Concept Microsimulation Study," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2483-:d:505720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2483/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2483/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaheen, Susan PhD & Cohen, Adam, 2020. "Mobility on Demand in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt14f893rv, Institute of Transportation Studies, UC Berkeley.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Shaheen, Susan PhD & Cohen, Adam, 2018. "Impacts of Shared Mobility," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9vx1m1t9, Institute of Transportation Studies, UC Berkeley.
    4. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    5. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    6. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    8. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    9. Iacobucci, Riccardo & McLellan, Benjamin & Tezuka, Tetsuo, 2018. "Modeling shared autonomous electric vehicles: Potential for transport and power grid integration," Energy, Elsevier, vol. 158(C), pages 148-163.
    10. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    11. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    12. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.
    13. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    14. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    15. Xin Li & Sangen Hu & Wenbo Fan & Kai Deng, 2018. "Modeling an enhanced ridesharing system with meet points and time windows," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    16. Susan Shaheen & Adam Cohen, 2019. "Shared ride services in North America: definitions, impacts, and the future of pooling," Transport Reviews, Taylor & Francis Journals, vol. 39(4), pages 427-442, July.
    17. Shaheen, Susan & Cohen, Adam & Broader, Jacquelyn & Davis, Richard & Brown, Les & Neelakantan, Radha & Gopalakrishna, Deepak, 2020. "Mobility on Demand Planning and Implementation: Current Practices, Innovations, and Emerging Mobility Futures," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3hc6m2vj, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You Kong & Jihong Ou & Longfei Chen & Fengchun Yang & Bo Yu, 2023. "The Environmental Impacts of Automated Vehicles on Parking: A Systematic Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    2. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    3. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Stumpe, Miriam & Dieter, Peter & Schryen, Guido & Müller, Oliver & Beverungen, Daniel, 2024. "Designing taxi ridesharing systems with shared pick-up and drop-off locations: Insights from a computational study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    5. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Anne Aguiléra & Eléonore Pigalle, 2021. "The Future and Sustainability of Carpooling Practices. An Identification of Research Challenges," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    7. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
    8. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    9. Collins, Mor & Etzioni, Shelly & Ben-Elia, Eran, 2024. "Travel behavior and system dynamics in a simple gamified automated multimodal network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    10. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    11. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    12. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    13. Paul Czioska & Ronny Kutadinata & Aleksandar Trifunović & Stephan Winter & Monika Sester & Bernhard Friedrich, 2019. "Real-world meeting points for shared demand-responsive transportation systems," Public Transport, Springer, vol. 11(2), pages 341-377, August.
    14. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    15. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    16. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    18. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    19. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    20. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2483-:d:505720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.