IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1853-d495910.html
   My bibliography  Save this article

Domestic Wastewater Treatment: A Comparison between an Integrated Hybrid UASB-IFAS System and a Conventional UASB-AS System

Author

Listed:
  • Ayman M. Dohdoh

    (Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Ibrahim Hendy

    (Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Martina Zelenakova

    (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical, University of Kosice, Vysokoskolska 4, 04001 Kosice, Slovakia)

  • Ahmed Abdo

    (Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

The current study presents a detailed evaluation and comparison between two integrated anaerobic–aerobic systems for biological wastewater treatment under equal conditions in all aspects (wastewater characteristics, climatic conditions, reactor sizing, and even the measurement methods). The two examined systems are (i) a hybrid upflow anaerobic sludge blanket (hybrid UASB) coupled with integrated fixed-film activated sludge (IFAS) and (ii) a conventional UASB coupled with activated sludge (AS). The present comparative study aims to evaluate and assess the effect of adding carrier-filling media on the performance of the classical integrated UASB-AS. The two parallel pilot-scale systems, hybrid UASB-IFAS and UASB-AS, were installed and operated at a wastewater treatment plant. Three sets of experiments were conducted to examine the influence of the hydraulic retention time (HRT) on the consequent organic and hydraulic loads, temperature, and recirculation rate of the proposed systems. The main results showed that the two investigated systems had a comparably high efficiency for the removal of organic matters and ammonia. Moreover, a paired sample t -test indicated there was a statistically significant effect of the filling media, and the performance of the hybrid UASB-IFAS increased significantly compared with that of the UASB-AS system. An additional benefit of the filling media on the hybrid system was its high stability when changing the organic and hydraulic loads. The optimum HRT was 6 h, with a total chemical oxygen demand (TCOD) percentage removal of approximately 95% in both examined systems. Treatment of sewage under high and low temperatures indicated that increasing the temperature improved the efficiency of the overall process for both systems significantly.

Suggested Citation

  • Ayman M. Dohdoh & Ibrahim Hendy & Martina Zelenakova & Ahmed Abdo, 2021. "Domestic Wastewater Treatment: A Comparison between an Integrated Hybrid UASB-IFAS System and a Conventional UASB-AS System," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1853-:d:495910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Bin Nisar & Syyed Adnan Raheel Shah & Muhammad Owais Tariq & Muhammad Waseem, 2020. "Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigrid Kusch-Brandt & Mohammad A. T. Alsheyab, 2021. "Wastewater Refinery: Producing Multiple Valuable Outputs from Wastewater," J, MDPI, vol. 4(1), pages 1-11, February.
    2. Marzena Smol & Dariusz Włóka, 2022. "Use of Natural Sorbents in the Processes of Removing Biogenic Compounds from the Aquatic Environment," Sustainability, MDPI, vol. 14(11), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1853-:d:495910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.