IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p821-d481169.html
   My bibliography  Save this article

Effects of Production of Woody Pellets in the Southeastern United States on the Sustainable Development Goals

Author

Listed:
  • Keith L. Kline

    (Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA)

  • Virginia H. Dale

    (Three3, Inc., Knoxville, TN 37902, USA
    Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA)

  • Erin Rose

    (Three3, Inc., Knoxville, TN 37902, USA)

  • Bruce Tonn

    (Three3, Inc., Knoxville, TN 37902, USA)

Abstract

Wood-based pellets are produced in the southeastern United States (SE US) and shipped to Europe for the generation of heat and power. Effects of pellet production on selected Sustainability Development Goals (SDGs) are evaluated using industry information, available energy consumption data, and published research findings. Challenges associated with identifying relevant SDG goals and targets for this particular bioenergy supply chain and potential deleterious impacts are also discussed. We find that production of woody pellets in the SE US and shipments to displace coal for energy in Europe generate positive effects on affordable and clean energy (SDG 7), decent work and economic growth (SDG 8), industry innovation and infrastructure (SDG 9), responsible consumption and production (SDG 12), and life on land (SDG 15). Primary strengths of the pellet supply chain in the SE US are the provisioning of employment in depressed rural areas and the displacement of fossil fuels. Weaknesses are associated with potential impacts on air, water, and biodiversity that arise if the resource base and harvest activities are improperly managed. The SE US pellet supply chain provides an opportunity for transition to low-carbon industries and innovations while incentivizing better resource management.

Suggested Citation

  • Keith L. Kline & Virginia H. Dale & Erin Rose & Bruce Tonn, 2021. "Effects of Production of Woody Pellets in the Southeastern United States on the Sustainable Development Goals," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:821-:d:481169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lotte Visser & Ric Hoefnagels & Martin Junginger, 2020. "The Potential Contribution of Imported Biomass to Renewable Energy Targets in the EU–the Trade-off between Ambitious Greenhouse Gas Emission Reduction Targets and Cost Thresholds," Energies, MDPI, vol. 13(7), pages 1-30, April.
    2. Esther S. Parish & Virginia H. Dale & Keith L. Kline & Robert C. Abt, 2017. "Reference scenarios for evaluating wood pellet production in the Southeastern United States," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    3. Hodges, Donald G. & Chapagain, Binod & Watcharaanantapong, Pattarawan & Poudyal, Neelam C. & Kline, Keith L. & Dale, Virginia H., 2019. "Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Jeannette Eggers & Ylva Melin & Johanna Lundström & Dan Bergström & Karin Öhman, 2020. "Management Strategies for Wood Fuel Harvesting—Trade-Offs with Biodiversity and Forest Ecosystem Services," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    5. Keith L Kline & Virginia H Dale, 2020. "Protecting Biodiversity through Forest Management: Lessons Learned and Strategies for Success," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 26(4), pages 142-147, November.
    6. Gruchy, Steven R. & Grebner, Donald L. & Munn, Ian A. & Joshi, Omkar & Hussain, Anwar, 2012. "An assessment of nonindustrial private forest landowner willingness to harvest woody biomass in support of bioenergy production in Mississippi: A contingent rating approach," Forest Policy and Economics, Elsevier, vol. 15(C), pages 140-145.
    7. Joshi, Omkar & Grebner, Donald L. & Hussain, Anwar & Grado, Stephen C., 2013. "Landowner knowledge and willingness to supply woody biomass for wood-based bioenergy: Sample selection approach," Journal of Forest Economics, Elsevier, vol. 19(2), pages 97-109.
    8. Dahal, Ram P. & Aguilar, Francisco X. & McGarvey, Ronald G. & Becker, Dennis & Abt, Karen L., 2020. "Localized economic contributions of renewable wood-based biopower generation," Energy Economics, Elsevier, vol. 91(C).
    9. Visser, L. & Hoefnagels, R. & Junginger, M., 2020. "Wood pellet supply chain costs – A review and cost optimization analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashkan Mirzaee & Ronald G. McGarvey & Francisco X. Aguilar & Erin M. Schliep, 2023. "Impact of biopower generation on eastern US forests," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4087-4105, May.
    2. Rohit Agrawal & Abhijit Majumdar & Kirty Majumdar & Rakesh D. Raut & Balkrishna E. Narkhede, 2022. "Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3669-3687, November.
    3. Stephen J. Ramos & Umit Yilmaz, 2023. "Energy transition and city–port symbiosis in biomass import–export regions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(2), pages 406-428, June.
    4. Esmaeil Mohammadian Bishe & Hossein Afshin & Bijan Farhanieh, 2023. "Modified Quasi-Physical Grassland Fire Spread Model: Sensitivity Analysis," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    5. Renata Aguayo Lopes da Silva & Renato Cesar Gonçalves Robert & Thomas Purfürst, 2023. "How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods," Sustainability, MDPI, vol. 15(11), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omoyemeh J. Ile & Hanna McCormick & Sheila Skrabacz & Shamik Bhattacharya & Maricar Aguilos & Henrique D. R. Carvalho & Joshua Idassi & Justin Baker & Joshua L. Heitman & John S. King, 2022. "Integrating Short Rotation Woody Crops into Conventional Agricultural Practices in the Southeastern United States: A Review," Land, MDPI, vol. 12(1), pages 1-26, December.
    2. Quan-Hoang Vuong & Quang-Loc Nguyen & Ruining Jin & Minh-Hieu Thi Nguyen & Thi-Phuong Nguyen & Viet-Phuong La & Minh-Hoang Nguyen, 2023. "Increasing Supply for Woody-Biomass-Based Energy through Wasted Resources: Insights from US Private Landowners," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    3. Sarah Mittlefehldt & Erin Bunting & Emily Huff & Joseph Welsh & Robert Goodwin, 2021. "New Methods for Assessing Sustainability of Wood-Burning Energy Facilities: Combining Historical and Spatial Approaches," Energies, MDPI, vol. 14(23), pages 1-18, November.
    4. Dulys, Elena & Swinton, Scott & Klammer, Sarah, 2016. "What Drives the Potential Supply of Timber Residues from Private Lands?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 242363, Agricultural and Applied Economics Association.
    5. repec:ags:aaea16:235752 is not listed on IDEAS
    6. Aguilar, Francisco X. & Daniel, Marissa “Jo” & Cai, Zhen, 2014. "Family-forest Owners’ Willingness to Harvest Sawlogs and Woody Biomass: The Effect of Price on Social Availability," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 43(2), pages 1-21, August.
    7. Ugarte Lucas, Paula & Gamborg, Christian & Lund, Thomas Bøker, 2022. "Sustainability concerns are key to understanding public attitudes toward woody biomass for energy: A survey of Danish citizens," Renewable Energy, Elsevier, vol. 194(C), pages 181-194.
    8. Milis, Kevin & Peremans, Herbert & Springael, Johan & Van Passel, Steven, 2019. "Win-win possibilities through capacity tariffs and battery storage in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Mukherjee, Agneev & Bruijnincx, Pieter & Junginger, Martin, 2023. "Techno-economic competitiveness of renewable fuel alternatives in the marine sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Mutandwa, Edward & Grala, Robert K. & Petrolia, Daniel R., 2019. "Estimates of willingness to accept compensation to manage pine stands for ecosystem services," Forest Policy and Economics, Elsevier, vol. 102(C), pages 75-85.
    11. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Xian, Hui & Colson, Gregory & Karali, Berna & Wetzstein, Michael, 2017. "Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets," Journal of Forest Economics, Elsevier, vol. 28(C), pages 42-48.
    13. Khanal, Puskar N. & Grebner, Donald L. & Munn, Ian A. & Grado, Stephen C. & Grala, Robert K. & Henderson, James E., 2017. "Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States," Forest Policy and Economics, Elsevier, vol. 75(C), pages 112-119.
    14. Andrzej Bochniak & Monika Stoma, 2021. "Estimating the Optimal Location for the Storage of Pellet Surplus," Energies, MDPI, vol. 14(20), pages 1-16, October.
    15. Josset, Clement & Shanafelt, David W. & Abildtrup, Jens & Stenger, Anne, 2023. "Probabilistic typology of private forest owners: A tool to target the development of new market for ecosystem services," Land Use Policy, Elsevier, vol. 134(C).
    16. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    17. Mutandwa, Edward & Grala, Robert K. & Grebner, Donald L., 2016. "Family forest land availability for the production of ecosystem services in Mississippi, United States," Forest Policy and Economics, Elsevier, vol. 73(C), pages 18-24.
    18. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    19. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    20. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    21. Pradipta Halder & Javier Arevalo & Liisa Tahvanainen & Paavo Pelkonen, 2014. "Benefits and Challenges Associated with the Development of Forest-Based Bioenergy Projects in India: Results from an Expert Survey," Challenges, MDPI, vol. 5(1), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:821-:d:481169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.