IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13921-d704066.html
   My bibliography  Save this article

Understanding the Heterogeneity of Human Mobility Patterns: User Characteristics and Modal Preferences

Author

Listed:
  • Laiyun Wu

    (Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA)

  • Samiul Hasan

    (College of Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA)

  • Younshik Chung

    (Department of Urban Planning and Engineering, Yeungnam University, Gyeungsan 38541, Korea)

  • Jee Eun Kang

    (Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA)

Abstract

Characterizing individual mobility is critical to understand urban dynamics and to develop high-resolution mobility models. Previously, large-scale trajectory datasets have been used to characterize universal mobility patterns. However, due to the limitations of the underlying datasets, these studies could not investigate how mobility patterns differ over user characteristics among demographic groups. In this study, we analyzed a large-scale Automatic Fare Collection (AFC) dataset of the transit system of Seoul, South Korea and investigated how mobility patterns vary over user characteristics and modal preferences. We identified users’ commuting locations and estimated the statistical distributions required to characterize their spatio-temporal mobility patterns. Our findings show the heterogeneity of mobility patterns across demographic user groups. This result will significantly impact future mobility models based on trajectory datasets.

Suggested Citation

  • Laiyun Wu & Samiul Hasan & Younshik Chung & Jee Eun Kang, 2021. "Understanding the Heterogeneity of Human Mobility Patterns: User Characteristics and Modal Preferences," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13921-:d:704066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    3. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiqun (Michael) & Chen, Chuqiao & Ni, Linglin & Li, Li, 2018. "Spatial visitation prediction of on-demand ride services using the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 84-94.
    2. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    3. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    4. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    5. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    6. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    8. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    9. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    10. Barmak, D.H. & Dorso, C.O. & Otero, M., 2016. "Modelling dengue epidemic spreading with human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 129-140.
    11. Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2022. "Revealing mobility pattern of taxi movements with its travel trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    12. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    13. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    14. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    15. Qianqian Liu & Qun Wang, 2017. "A comparative study on uncooperative search models in survivor search and rescue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 843-857, November.
    16. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    17. Li, Yan & Ye, Hang & Zhang, Hong, 2016. "Evolution of cooperation driven by social-welfare-based migration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 48-56.
    18. Tini Garske & Hongjie Yu & Zhibin Peng & Min Ye & Hang Zhou & Xiaowen Cheng & Jiabing Wu & Neil Ferguson, 2011. "Travel Patterns in China," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    19. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    20. Paul Peeters & Martin Landré, 2011. "The Emerging Global Tourism Geography—An Environmental Sustainability Perspective," Sustainability, MDPI, vol. 4(1), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13921-:d:704066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.