IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13007-d686803.html
   My bibliography  Save this article

Digitalization as an Engine for Change? Building a Vision Pathway towards a Sustainable Health Care System by Using the MLP and Health Economic Decision Modelling

Author

Listed:
  • Johanna Leväsluoto

    (VTT Technical Research Centre of Finland, Visiokatu 4, 33101 Tampere, Finland)

  • Johanna Kohl

    (Natural Resources Centre Finland LUKE, Latokartanonkaari 9, 00790 Helsinki, Finland)

  • Anton Sigfrids

    (VTT Technical Research Centre of Finland, Visiokatu 4, 33101 Tampere, Finland)

  • Jussi Pihlajamäki

    (Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland)

  • Janne Martikainen

    (Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland)

Abstract

Grand social challenges, such as type 2 diabetes (T2D), are increasing, which creates sustainability problems for health care service systems. To reduce socio-economic burdens, changes are required in the socio-technical system. However, there is an uncertainty of the most cost-effective policy action that can create sustainability while providing health benefits. To find potential solutions to these challenges, the multi-level perspective (MLP) and health economic decision modelling was used to study socio-technical change and project potential health economic consequences of different scenarios. The study focuses on creating a vision pathway for reducing T2D in Finland. In total, 23 interviews were carried out and the results were analyzed utilizing the MLP model. As a result, five themes towards prevention of T2D were identified. Digitalization was found to be a cross-cutting theme for preventing T2D and was thus taken as the object of study and the main focus of this paper. As a result, this paper reports on the opportunities and barriers for using digital tools in a transition towards T2D prevention. A health economic decision modelling revealed that the highest expected savings could be obtained by prioritizing prevention programs based on T2D risk. Finally, the model was converted into a web-based online tool by combining vision pathway, transition-focused storylines and forward-looking health economic scenario analysis to give the policy makers an overall picture of the needed societal changes and support the impact assessment of alternative policies in a case of T2D prevention in Finland.

Suggested Citation

  • Johanna Leväsluoto & Johanna Kohl & Anton Sigfrids & Jussi Pihlajamäki & Janne Martikainen, 2021. "Digitalization as an Engine for Change? Building a Vision Pathway towards a Sustainable Health Care System by Using the MLP and Health Economic Decision Modelling," Sustainability, MDPI, vol. 13(23), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13007-:d:686803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    3. Johanna Leväsluoto & Kirsi Hyytinen & Marja Toivonen, 2017. "Child and family services in the digital era [Le services à l’enfance et à la famille à l’ère numérique]," Post-Print hal-01682614, HAL.
    4. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    5. Kraus, Sascha & Schiavone, Francesco & Pluzhnikova, Anna & Invernizzi, Anna Chiara, 2021. "Digital transformation in healthcare: Analyzing the current state-of-research," Journal of Business Research, Elsevier, vol. 123(C), pages 557-567.
    6. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    7. Mark Roberts & Louise B. Russell & A. David Paltiel & Michael Chambers & Phil McEwan & Murray Krahn, 2012. "Conceptualizing a Model," Medical Decision Making, , vol. 32(5), pages 678-689, September.
    8. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    9. Geels, Frank W. & Kemp, René, 2007. "Dynamics in socio-technical systems: Typology of change processes and contrasting case studies," Technology in Society, Elsevier, vol. 29(4), pages 441-455.
    10. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.
    11. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
    12. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    13. David M. Eddy & William Hollingworth & J. Jaime Caro & Joel Tsevat & Kathryn M. McDonald & John B. Wong, 2012. "Model Transparency and Validation," Medical Decision Making, , vol. 32(5), pages 733-743, September.
    14. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    15. Andrew H. Briggs & Milton C. Weinstein & Elisabeth A. L. Fenwick & Jonathan Karnon & Mark J. Sculpher & A. David Paltiel, 2012. "Model Parameter Estimation and Uncertainty Analysis," Medical Decision Making, , vol. 32(5), pages 722-732, September.
    16. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    17. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    18. Köhler, Jonathan & Turnheim, Bruno & Hodson, Mike, 2020. "Low carbon transitions pathways in mobility: Applying the MLP in a combined case study and simulation bridging analysis of passenger transport in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelos I. Stoumpos & Fotis Kitsios & Michael A. Talias, 2023. "Digital Transformation in Healthcare: Technology Acceptance and Its Applications," IJERPH, MDPI, vol. 20(4), pages 1-44, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geels, F.W. & McMeekin, A. & Pfluger, B., 2020. "Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: Bridging computer models and the multi-level perspective in UK electricity gen," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    3. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    4. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    5. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    6. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    7. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    8. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    9. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Haddad, Carolina R. & Bergek, Anna, 2023. "Towards an integrated framework for evaluating transformative innovation policy," Research Policy, Elsevier, vol. 52(2).
    12. Ingunn Y. Gudbrandsdottir & Nína M. Saviolidis & Gudrun Olafsdottir & Gudmundur V. Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    13. Trutnevyte, Evelina & Strachan, Neil & Dodds, Paul E. & Pudjianto, Danny & Strbac, Goran, 2015. "Synergies and trade-offs between governance and costs in electricity system transition," Energy Policy, Elsevier, vol. 85(C), pages 170-181.
    14. Edler, Jakob & Köhler, Jonathan Hugh & Wydra, Sven & Salas-Gironés, Edgar & Schiller, Katharina & Braun, Annette, 2021. "Dimensions of systems and transformations: Towards an integrated framework for system transformations," Working Papers "Sustainability and Innovation" S03/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Brem, Alexander & Radziwon, Agnieszka, 2017. "Efficient Triple Helix collaboration fostering local niche innovation projects – A case from Denmark," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 130-141.
    16. André Sorensen & Anna-Katharina Brenner, 2021. "Cities, Urban Property Systems, and Sustainability Transitions: Contested Processes of Institutional Change and the Regulation of Urban Property Development," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    17. Jayaraj, Nikhil & Klarin, Anton & Ananthram, Subramaniam, 2024. "The transition towards solar energy storage: a multi-level perspective," Energy Policy, Elsevier, vol. 192(C).
    18. Jain, Sanjay, 2020. "Fumbling to the future? Socio-technical regime change in the recorded music industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    19. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    20. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13007-:d:686803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.