IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12858-d683901.html
   My bibliography  Save this article

Implementing MCDM Techniques for Ranking Renewable Energy Projects under Fuzzy Environment: A Case Study

Author

Listed:
  • Mohsen Ramezanzade

    (Department of Water Resources Basic Studies of North Khorasan Regional Water Company, Bojnord 94156-44891, Iran)

  • Hossein Karimi

    (Department of Industrial Engineering, University of Bojnord, Bojnord 94531-55111, Iran)

  • Khalid Almutairi

    (Mechanical Engineering Technology, Applied College, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia)

  • Hoa Ao Xuan

    (Faculty of Economics, Tay Nguyen University, Buon Ma Thuot City 63000, Vietnam)

  • Javad Saebi

    (Department of Electrical Engineering, University of Bojnord, Bojnord 94531-55111, Iran)

  • Ali Mostafaeipour

    (Industrial Engineering Department, Yazd University, Yazd 89158-18411, Iran
    Faculty Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research, Prince of Songkla University, Songkhla 90110, Thailand)

  • Kuaanan Techato

    (Faculty Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research, Prince of Songkla University, Songkhla 90110, Thailand)

Abstract

Energy requirements have increased dramatically due to industrialization, economic, and population growth. To meet this demand, and solve its challenges, such as climate change, renewable energies do play an important role. This research work aims at selecting the best renewable energy projects using a hybrid decision-making framework from environmental, economic, technical, and social aspects at a sub-national level. In this regard, a new hybrid fuzzy multi-criteria decision-making model is deployed in which Vise Kriterijumska Optimizacija I Kompromisno Resenje, distance from average solution, and additive ratio assessment methods are used. In addition, for the weighing of criteria, Fuzzy Shannon’s entropy is used. Furthermore, the North Khorasan province is nominated as a sub-national study area. The results show that among 30 sub-criteria, social acceptance, net-presented cost, and noise were the top three with weights of 0.1105, 0.1003, and 0.0988, respectively. Solar energy projects also accomplished high ranks with an overall score of roughly 0.22. After that, small hydropower got second place with a score of 0.187. Moreover, the ranking of cities indicates that Jajarm was the most suitable location for implementing renewable energy development with a score of 0.14. Finally, sensitivity analysis was carried out to show that the mathematical model possessed good robustness.

Suggested Citation

  • Mohsen Ramezanzade & Hossein Karimi & Khalid Almutairi & Hoa Ao Xuan & Javad Saebi & Ali Mostafaeipour & Kuaanan Techato, 2021. "Implementing MCDM Techniques for Ranking Renewable Energy Projects under Fuzzy Environment: A Case Study," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12858-:d:683901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    2. Kong, Yuan & Feng, Chao & Yang, Jun, 2020. "How does China manage its energy market? A perspective of policy evolution," Energy Policy, Elsevier, vol. 147(C).
    3. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    4. Sitorus, Fernando & Brito-Parada, Pablo R., 2020. "A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Ebrahimi, Mehri & Rahmani, Donya, 2019. "A five-dimensional approach to sustainability for prioritizing energy production systems using a revised GRA method: A case study," Renewable Energy, Elsevier, vol. 135(C), pages 345-354.
    6. Fengsheng Chien & Chia-Nan Wang & Viet Tinh Nguyen & Van Thanh Nguyen & Ka Yin Chau, 2020. "An Evaluation Model of Quantitative and Qualitative Fuzzy Multi-Criteria Decision-Making Approach for Hydroelectric Plant Location Selection," Energies, MDPI, vol. 13(11), pages 1-14, June.
    7. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    8. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    9. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    10. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    11. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    12. Bo Liu & Deepak Rajagopal, 2019. "Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States," Nature Energy, Nature, vol. 4(8), pages 700-708, August.
    13. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    14. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    15. Aleksandra Bączkiewicz & Bartłomiej Kizielewicz & Andrii Shekhovtsov & Mykhailo Yelmikheiev & Volodymyr Kozlov & Wojciech Sałabun, 2021. "Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon," Energies, MDPI, vol. 14(18), pages 1-21, September.
    16. MAREK HUDON & BENJAMIN HUYBRECHTS & Vasco BRUMMER & Carsten HERBES & Naomi GERICKE, 2017. "CONFLICT HANDLING IN RENEWABLE ENERGY COOPERATIVES (RECs): ORGANIZATIONAL EFFECTS AND MEMBER WELL-BEING," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 88(2), pages 179-202, June.
    17. Lee, Hsing-Chen & Chang, Ching-Ter, 2018. "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 883-896.
    18. Mrówczyńska, M. & Skiba, M. & Sztubecka, M. & Bazan-Krzywoszańska, A. & Kazak, J.K. & Gajownik, P., 2021. "Scenarios as a tool supporting decisions in urban energy policy: The analysis using fuzzy logic, multi-criteria analysis and GIS tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zehba Raizah & Udaya Kumara Kodipalya Nanjappa & Harshitha Urs Ajjipura Shankar & Umair Khan & Sayed M. Eldin & Rajesh Kumar & Ahmed M. Galal, 2022. "Windmill Global Sourcing in an Initiative Using a Spherical Fuzzy Multiple-Criteria Decision Prototype," Energies, MDPI, vol. 15(21), pages 1-13, October.
    2. Rachna, & Singh, Amit Kumar, 2024. "Analyzing policy interventions to stimulate suitable energy sources for the most polluted states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Talieh Abdolkhaninezhad & Masoud Monavari & Nematollah Khorasani & Maryam Robati & Forogh Farsad, 2022. "Analysis Indicators of Health-Safety in the Risk Assessment of Landfill with the Combined Method of Fuzzy Multi-Criteria Decision Making and Bow Tie Model," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    4. Adnan Veysel Ertemel & Akin Menekse & Hatice Camgoz Akdag, 2023. "Smartphone Addiction Assessment Using Pythagorean Fuzzy CRITIC-TOPSIS," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    5. Mahammad Nuriyev & Aziz Nuriyev & Jeyhun Mammadov, 2023. "Renewable Energy Transition Task Solution for the Oil Countries Using Scenario-Driven Fuzzy Multiple-Criteria Decision-Making Models: The Case of Azerbaijan," Energies, MDPI, vol. 16(24), pages 1-22, December.
    6. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    7. Alaa Fouad Momena & Kamal Hossain Gazi & Mostafijur Rahaman & Anna Sobczak & Soheil Salahshour & Sankar Prasad Mondal & Arijit Ghosh, 2024. "Ranking and Challenges of Supply Chain Companies Using MCDM Methodology," Logistics, MDPI, vol. 8(3), pages 1-32, September.
    8. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horasan, Muhammed Bilal & Kilic, Huseyin Selcuk, 2022. "A multi-objective decision-making model for renewable energy planning: The case of Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 484-504.
    2. Wątróbski, Jarosław & Bączkiewicz, Aleksandra & Sałabun, Wojciech, 2022. "New multi-criteria method for evaluation of sustainable RES management," Applied Energy, Elsevier, vol. 324(C).
    3. Krishankumar, Raghunathan & Pamucar, Dragan & Deveci, Muhammat & Aggarwal, Manish & Ravichandran, Kattur Soundarapandian, 2022. "Assessment of renewable energy sources for smart cities’ demand satisfaction using multi-hesitant fuzzy linguistic based choquet integral approach," Renewable Energy, Elsevier, vol. 189(C), pages 1428-1442.
    4. Aikaterini Papapostolou & Charikleia Karakosta & Georgios Apostolidis & Haris Doukas, 2020. "An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation," Sustainability, MDPI, vol. 12(7), pages 1-28, April.
    5. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    6. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    7. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    8. Limei Liu & Xinyun Chen & Yi Yang & Junfeng Yang & Jie Chen, 2023. "Prioritization of Off-Grid Hybrid Renewable Energy Systems for Residential Communities in China Considering Public Participation with Basic Uncertain Linguistic Information," Sustainability, MDPI, vol. 15(11), pages 1-30, May.
    9. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Zhang, Yao & Zhang, Yuxin & Gong, Chao & Dinçer, Hasan & Yüksel, Serhat, 2022. "An integrated hesitant 2-tuple Pythagorean fuzzy analysis of QFD-based innovation cost and duration for renewable energy projects," Energy, Elsevier, vol. 248(C).
    11. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    12. Chia-Nan Wang & Yih-Tzoo Chen & Chun-Chun Tung, 2021. "Evaluation of Wave Energy Location by Using an Integrated MCDM Approach," Energies, MDPI, vol. 14(7), pages 1-14, March.
    13. Aleksandra Bączkiewicz & Bartłomiej Kizielewicz & Andrii Shekhovtsov & Mykhailo Yelmikheiev & Volodymyr Kozlov & Wojciech Sałabun, 2021. "Comparative Analysis of Solar Panels with Determination of Local Significance Levels of Criteria Using the MCDM Methods Resistant to the Rank Reversal Phenomenon," Energies, MDPI, vol. 14(18), pages 1-21, September.
    14. Rachna, & Singh, Amit Kumar, 2024. "Analyzing policy interventions to stimulate suitable energy sources for the most polluted states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. Moghaddam, Hossein Azizi & Shorabeh, Saman Nadizadeh, 2022. "Designing and implementing a location-based model to identify areas suitable for multi-renewable energy development for supplying electricity to agricultural wells," Renewable Energy, Elsevier, vol. 200(C), pages 1251-1264.
    16. Hussain, Abid & Sarangi, Gopal K. & Pandit, Anju & Ishaq, Sultan & Mamnun, Nabir & Ahmad, Bashir & Jamil, Muhammad Khalid, 2019. "Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 446-461.
    17. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    18. Elkadeem, M.R. & Younes, Ali & Sharshir, Swellam W. & Campana, Pietro Elia & Wang, Shaorong, 2021. "Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis," Applied Energy, Elsevier, vol. 295(C).
    19. Seker, Sukran, 2022. "IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment," Technology in Society, Elsevier, vol. 71(C).
    20. Rahadian Dadan & Firli Anisah & Dinçer Hasan & Yüksel Serhat & Hacıoğlu Ümit & Gherghina Ştefan Cristian & Aksoy Tamer, 2023. "An Evaluation of E7 Countries’ Sustainable Energy Investments: A Decision-Making Approach with Spherical Fuzzy Sets," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 17(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12858-:d:683901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.