IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11378-d656753.html
   My bibliography  Save this article

The Impact of Environmental Governance on the Development of Fishery Economy—The Intermediary Role of Technological Innovation

Author

Listed:
  • Na Hou

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Qianying Zhu

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Jinlin Yang

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Dahong Zhang

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Wenwen Liu

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Hong Chang

    (School of Economics, Capital University of Economics and Business, Beijing 100070, China)

Abstract

In the context of the “new normal” of China’s economic development, it is urgent to solve the contradiction between fishery development and environmental protection. To promote the construction of a modern fishery power, we must return to ecological priority. Based on this, the research used relevant data samples from various provinces during 2004–2017. The level of fishery economic development is measured using fishery added value and total fishery output value; the industrial pollution control investment and environmental pollution control investment represent the intensity of environmental control; the relationship between environmental governance and fishery economic development is explored, and the intermediary role of technological innovation is further analyzed. Empirical results show that environmental governance has a significant positive impact on fishery economic development, and this influence shows both spatial and temporal heterogeneity, regionally showing the distribution characteristic of “in the eastern region > in the central region > in the western region”, and the time series show the “strengthened influence − weakened influence” i.e., “inverted U” variations. In addition, technological innovation plays a certain intermediary role in the impact of environmental governance on fishery economic development. The research provides a theoretical basis for breaking through the bottleneck of fishery development and realizing high-quality and sustainable development.

Suggested Citation

  • Na Hou & Qianying Zhu & Jinlin Yang & Dahong Zhang & Wenwen Liu & Hong Chang, 2021. "The Impact of Environmental Governance on the Development of Fishery Economy—The Intermediary Role of Technological Innovation," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11378-:d:656753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sadik-Zada, Elkhan Richard & Gatto, Andrea, 2021. "The puzzle of greenhouse gas footprints of oil abundance," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    2. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    3. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    4. Elkhan Richard Sadik-Zada & Mattia Ferrari, 2020. "Environmental Policy Stringency, Technical Progress and Pollution Haven Hypothesis," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    5. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    6. Abigail J. Lynch & Vittoria Elliott & Sui C. Phang & Julie E. Claussen & Ian Harrison & Karen J. Murchie & E. Ashley Steel & Gretchen L. Stokes, 2020. "Inland fish and fisheries integral to achieving the Sustainable Development Goals," Nature Sustainability, Nature, vol. 3(8), pages 579-587, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingshuai Wang & Ehsan Elahi & Zainab Khalid & Mohammad Ilyas Abro, 2023. "Environmental Governance Goals of Local Governments and Technological Innovation of Enterprises under Green Performance Assessment," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    2. Xuefeng Liu & Hanzhi Yu & Guowei Lai & Shuxiao Wang & Yuying Xie, 2022. "Imitation or Innovation? Research on the Path Selection of Enterprise Performance Improvement from the Perspective of Organizational Ecology," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    3. Xiaohua Yu & Yuan Qi & Longzhen Yu & Yuanyuan He, 2022. "Temporal and Spatial Evolution of Coupling Coordination Degree of Industrial Innovation Ecosystem—From the Perspective of Green Transformation," Sustainability, MDPI, vol. 14(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    2. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    3. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    4. Tamazian, Artur & Bhaskara Rao, B., 2010. "Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies," Energy Economics, Elsevier, vol. 32(1), pages 137-145, January.
    5. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    6. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    7. Wang, Sophie Xuefei & Fu, Yu Benjamin & Zhang, Zhe George, 2015. "Population growth and the environmental Kuznets curve," China Economic Review, Elsevier, vol. 36(C), pages 146-165.
    8. Martin Neve & Bertrand Hamaide, 2017. "Environmental Kuznets Curve with Adjusted Net Savings as a Trade-Off Between Environment and Development," Australian Economic Papers, Wiley Blackwell, vol. 56(1), pages 39-58, March.
    9. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    10. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    11. Anelí Bongers, 2020. "The Environmental Kuznets Curve and the Energy Mix: A Structural Estimation," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Seref Bozoklu & A. Oguz Demir & Sinan Ataer, 2020. "Reassessing the environmental Kuznets curve: a summability approach for emerging market economies," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 10(3), pages 513-531, September.
    13. Xiaosheng Li & Xia Yan & Qingxian An & Ke Chen & Zhen Shen, 2016. "The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 233-252, August.
    14. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Mahmood, Haider & Arouri, Mohamed, 2013. "Does financial development reduce CO2 emissions in Malaysian economy? A time series analysis," Economic Modelling, Elsevier, vol. 35(C), pages 145-152.
    15. Carolina Jimenez & Luis Moncada & Diego Ochoa-Jimenez & Wilman-Santiago Ochoa-Moreno, 2019. "Kuznets Environmental Curve for Ecuador: An Analysis of the Impact of Economic Growth on the Environment," Sustainability, MDPI, vol. 11(21), pages 1-11, October.
    16. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    17. Bucher, Florian & Scheu, Lucas & Schröpf, Benedikt, 2022. "Economic complexity and environmental pollution: Evidence from the former socialist transition countries," Discussion Papers 124, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    18. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    19. Saia, Artjom, 2023. "Digitalization and CO2 emissions: Dynamics under R&D and technology innovation regimes," Technology in Society, Elsevier, vol. 74(C).
    20. Fouquet, Roger, 2011. "Long run trends in energy-related external costs," Ecological Economics, Elsevier, vol. 70(12), pages 2380-2389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11378-:d:656753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.